ﻻ يوجد ملخص باللغة العربية
The BLLac object S4 0954+65 is one of the main targets of the Urumqi monitoring program targeting IntraDay Variable (IDV) sources. Between August 2005 and December 2009, the source was included in 41 observing sessions, carried out at a frequency of 4.8 GHz. The time analysis of the collected light curves, performed by applying both a structure function analysis and a specifically developed wavelet-based algorithm, discovered an annual cycle in the variability timescales, suggesting that there is a fundamental contribution by interstellar scintillation to the IDV pattern of the source. The combined use of the two analysis methods also revealed that there was a dramatic change in the variability characteristics of the source between February and March 2008, at the starting time of a strong outburst phase. The analysis results suggest that the flaring state of the source coincides with the appearance of multiple timescales in its light curves, indicating that changes in the structure of the relativistically moving emitting region may strongly influence the variability observed on IDV timescales.
Among active galactic nuclei, blazars show extreme variability properties. We here investigate the case of the BL Lac object S4 0954+65 with data acquired in 2019-2020 by the Transiting Exoplanet Survey Satellite (TESS) and by the Whole Earth Blazar
The study of gamma-ray blazars is usually hindered due to the lack of information on their redshifts and on their low energy photon fields. This information is key to understand the effect on the gamma-ray absorption due to either extragalactic backg
The very-high-energy (VHE, $gtrsim 100$ GeV) $gamma$-ray MAGIC observations of the blazar S4 0954+65, were triggered by an exceptionally high flux state of emission in the optical. This blazar has a disputed redshift of z=0.368 or z$geqslant$0.45 and
We report results from a 1 week multi-wavelength campaign to monitor the BL Lac object S5 0716+714 (on December 9-16, 2009). In the radio bands the source shows rapid (~ (0.5-1.5) day) intra-day variability with peak amplitudes of up to ~ 10 %. The v
We present optical photopolarimetric observations of the BL Lac object S4 0954+658 obtained with the 70-cm telescope in Crimea, 40-cm telescope in St.Petersburg, and 1.8-m Perkins telescope at Lowell Observatory (Flagstaff, Az). After a faint state w