ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical reevaluations of the black hole mass - bulge mass relation - I. Effect of the seed black hole mass

85   0   0.0 ( 0 )
 نشر من قبل Hikari Shirakata
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hikari Shirakata




اسأل ChatGPT حول البحث

We explore the effect of varying the mass of the seed black hole on the resulting black hole mass - bulge mass relation at z ~ 0, using a semi-analytic model of galaxy formation combined with large cosmological N-body simulations. We constrain our model by requiring the observed properties of galaxies at z ~ 0 are reproduced. In keeping with previous semi-analytic models, we place a seed black hole immediately after a galaxy forms. When the mass of the seed is set at 10^5 M_sun, we find that the model results become inconsistent with recent observational results of the black hole mass - bulge mass relation for dwarf galaxies. In particular, the model predicts that bulges with ~ 10^9 M_sun harbour larger black holes than observed. On the other hand, when we employ seed black holes with 10^3 M_sun, or randomly select their mass within a 10^(3-5) M_sun range, the resulting relation is consistent with observation estimates, including the observed dispersion. We find that to obtain stronger constraints on the mass of seed black holes, observations of less massive bulges at z ~ 0 are a more powerful comparison than the relations at higher redshifts.



قيم البحث

اقرأ أيضاً

160 - Fabio Fontanot 2015
Recent inspections of local available data suggest that the almost linear relation between the stellar mass of spheroids ($M_{rm sph}$) and the mass of the super massive Black Holes (BHs) residing at their centres, shows a break below $M_{rm sph} sim 10^{10} {rm M}_odot$, with a steeper, about quadratic relation at smaller masses. We investigate the physical mechanisms responsible for the change in slope of this relation, by comparing data with the results of the semi-analytic model of galaxy formation MORGANA, which already predicted such a break in its original formulation. We find that the change of slope is mostly induced by effective stellar feedback in star-forming bulges. The shape of the relation is instead quite insensitive to other physical mechanisms connected to BH accretion such as disc instabilities, galaxy mergers, Active Galactic Nucleus (AGN) feedback, or even the exact modelling of accretion onto the BH, direct or through a reservoir of low angular momentum gas. Our results support a scenario where most stars form in the disc component of galaxies and are carried to bulges through mergers and disc instabilities, while accretion onto BHs is connected to star formation in the spheroidal component. Therefore, a model of stellar feedback that produces stronger outflows in star-forming bulges than in discs will naturally produce a break in the scaling relation. Our results point to a form of co-evolution especially at lower masses, below the putative break, mainly driven by stellar feedback rather than AGN feedback.
We derive the growth of SMBHs relative to the stellar content of their host galaxy predicted under the assumption of BH accretion triggered by galaxy encounters occurring during their merging histories. We show that, within this framework, the ratio Gamma=(M_BH/M_*)(z)/(M_BH/M_*)(z=0) between the Black Hole mass and the galactic stellar mass (normalized to the local value) depends on both BH mass and redshift. While the average value and the spread of Gamma(z) increase with z, such an effect is larger for massive BHs, reaching values Gamma=5 for massive Black Holes (M>10^9 M_{odot}) at z>4, in agreement with recent observations of high-redshift QSOs; this is due to the effectiveness of interactions in triggering BH accretion in high-density environments at high redshifts. To test such a model against observations, we worked out specific predictions for sub-samples of the simulated galaxies corresponding to the different observational samples for which measurements of Gamma have been obtained. We found that for Broad Line AGNs at 1<z<2 values of Gamma=2 are expected, with a mild trend toward larger value for increasing BH mass. Instead, when we select from our Monte Carlo simulations only extremely gas rich, rapidly star forming galaxies at 2<z<3, we find low values 0.3<Gamma<1.5, consistent with recent observational findings on samples of sub-mm galaxies; in the framework of our model, these objects end up at z=0 in low-to-intermediate mass BHs (M<10^9 M_{odot}), and they do not represent typical paths leading to local massive galaxies. The latter have formed preferentially through paths passing above the local M_*-M_BH relation. We discuss how the global picture emerging from the model is consistent with a downsizing scenario, where massive BHs accrete a larger fraction of their final mass at high redshifts z>4.
344 - Hajime Inoue 2021
We investigate a mechanism for a super-massive black hole at the center of a galaxy to wander in the nucleus region. A situation is supposed in which the central black hole tends to move by the gravitational attractions from the nearby molecular clou ds in a nuclear bulge but is braked via the dynamical frictions by the ambient stars there. We estimate the approximate kinetic energy of the black hole in an equilibrium between the energy gain rate through the gravitational attractions and the energy loss rate through the dynamical frictions, in a nuclear bulge composed of a nuclear stellar disk and a nuclear stellar cluster as observed from our Galaxy. The wandering distance of the black hole in the gravitational potential of the nuclear bulge is evaluated to get as large as several 10 pc, when the black hole mass is relatively small. The distance, however, shrinks as the black hole mass increases and the equilibrium solution between the energy gain and loss disappears when the black hole mass exceeds an upper limit. As a result, we can expect the following scenario for the evolution of the black hole mass: When the black hole mass is smaller than the upper limit, mass accretion of the interstellar matter in the circum-nuclear region, causing the AGN activities, makes the black hole mass larger. However, when the mass gets to the upper limit, the black hole loses the balancing force against the dynamical friction and starts spiraling downward to the gravity center. From simple parameter scaling, the upper mass limit of the black hole is found to be proportional to the bulge mass and this could explain the observed correlation of the black hole mass with the bulge mass.
157 - Kayhan Gultekin 2009
We report five new measurements of central black hole masses based on STIS and WFPC2 observations with the Hubble Space Telescope and on axisymmetric, three-integral, Schwarzschild orbit-library kinematic models. We selected a sample of galaxies with in a narrow range in velocity dispersion that cover a range of galaxy parameters (including Hubble type and core/power-law surface density profile) where we expected to be able to resolve the galaxys sphere of influence based on the predicted value of the black hole mass from the M-sigma relation. We find masses in units of 10^8 solar masses for the following galaxies: NGC 3585, M_BH = 3.4 (+1.5, -0.6); NGC 3607, M_BH = 1.2 (+0.4, -0.4); NGC 4026, M_BH = 2.1 (+0.7, -0.4); and NGC 5576, M_BH = 1.8 (+0.3, -0.4), all significantly excluding M_BH = 0. For NGC 3945, M_BH = 0.09 (+0.17, -0.21), which is significantly below predictions from M-sigma and M-L relations and consistent with M_BH = 0, though the presence of a double bar in this galaxy may present problems for our axisymmetric code.
We use the microlensing variability observed for nine gravitationally lensed quasars to show that the accretion disk size at 2500 Angstroms is related to the black hole mass by log(R_2500/cm) = (15.6+-0.2) + (0.54+-0.28)log(M_BH/10^9M_sun). This scal ing is consistent with the expectation from thin disk theory (R ~ M_BH^(2/3)), but it implies that black holes radiate with relatively low efficiency, log(eta) = -1.29+-0.44 + log(L/L_E) where eta=L/(Mdot c^2). These sizes are also larger, by a factor of ~3, than the size needed to produce the observed 0.8 micron quasar flux by thermal radiation from a thin disk with the same T ~ R^(-3/4) temperature profile. More sophisticated disk models are clearly required, particularly as our continuing observations improve the precision of the measurements and yield estimates of the scaling with wavelength and accretion rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا