ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Probe of Quantum Shot Noise Reduction at a Single-Atom Contact

98   0   0.0 ( 0 )
 نشر من قبل Natalia Schneider
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Visible and infra-red light emitted at a Ag-Ag(111) junction has been investigated from tunneling to single atom contact conditions with a scanning tunneling microscope. The light intensity varies in a highly nonlinear fashion with the conductance of the junction and exhibits a minimum at conductances close to the conductance quantum. The data are interpreted in terms of current noise at optical frequencies, which is characteristic of partially open transport channels.

قيم البحث

اقرأ أيضاً

83 - S. Freer , S. Simmons , A. Laucht 2016
Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a `quantum memory while idle. The $^{31}$P donor in silicon comes naturally equipped with a fast qubit (the electron spin) and a long-lived qubit (the $^{31}$P nuclear spin), coexisting in a bound state at cryogenic temperatures. Here, we demonstrate storage and retrieval of quantum information from a single donor electron spin to its host phosphorus nucleus in isotopically-enriched $^{28}$Si. The fidelity of the memory process is characterised via both state and process tomography. We report an overall process fidelity of $F_p =$81${pm}$7%, a memory fidelity ($F_m$) of over 90%, and memory storage times up to 80 ms. These values are limited by a transient shift of the electron spin resonance frequency following high-power radiofrequency pulses.
It is expected that ion trap quantum computing can be made scalable through protocols that make use of transport of ion qubits between sub-regions within the ion trap. In this scenario, any magnetic field inhomogeneity the ion experiences during the transport, may lead to dephasing and loss of fidelity. Here we demonstrate how to measure, and compensate for, magnetic field gradients inside a segmented ion trap, by transporting a single ion over variable distances. We attain a relative magnetic field sensitivity of Delta B/B_0 ~ 5*10^{-7} over a test distance of 140 micro m, which can be extended to the mm range, still with sub micro m resolution. A fast experimental sequence is presented, facilitating its use as a magnetic field gradient calibration routine, and it is demonstrated that the main limitation is the quantum shot noise.
81 - W. Song , A.K.M. Newaz , J.K. Son 2005
We have found experimentally that the shot noise of the tunneling current $I$ through an undoped semiconductor superlattice is reduced with respect to the Poissonian noise value $2eI$, and that the noise approaches 1/3 of that value in superlattices whose quantum wells are strongly coupled. On the other hand, when the coupling is weak or when a strong electric field is applied to the superlattice the noise becomes Poissonian. Although our results are qualitatively consistent with existing theories for one-dimensional mulitple barriers, the theories cannot account for the dependence of the noise on superlattice parameters that we have observed.
We prepare number stabilized ultracold clouds through the real-time analysis of non-destructive images and the application of feedback. In our experiments, the atom number ${Nsim10^6}$ is determined by high precision Faraday imaging with uncertainty $Delta_N$ below the shot noise level, i.e., $Delta_N <sqrt{N}$. Based on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level.
69 - Yu-Xin Wang , A. A. Clerk 2020
Having accurate tools to describe non-classical, non-Gaussian environmental fluctuations is crucial for designing effective quantum control protocols and understanding the physics of underlying quantum dissipative environments. We show how the Keldys h approach to quantum noise characterization can be usefully employed to characterize frequency-dependent noise, focusing on the quantum bispectrum (i.e., frequency-resolved third cumulant). Using the paradigmatic example of photon shot noise fluctuations in a driven bosonic mode, we show that the quantum bispectrum can be a powerful tool for revealing distinctive non-classical noise properties, including an effective breaking of detailed balance by quantum fluctuations. The Keldysh-ordered quantum bispectrum can be directly accessed using existing noise spectroscopy protocols.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا