ﻻ يوجد ملخص باللغة العربية
MapReduce is a popular parallel computing paradigm for Big Data processing in clusters and data centers. It is observed that different job execution orders and MapReduce slot configurations for a MapReduce workload have significantly different performance with regarding to the makespan, total completion time, system utilization and other performance metrics. There are quite a few algorithms on minimizing makespan of multiple MapReduce jobs. However, these algorithms are heuristic or suboptimal. The best known algorithm for minimizing the makespan is 3-approximation by applying Johnson rule. In this paper, we propose an approach called UAAS algorithm to meet the conditions of classical Johnson model. Then we can still use Johnson model for an optimal solution. We explain how to adapt to Johnson model and provide a few key features of our proposed method.
We consider the classic problem of scheduling jobs with precedence constraints on a set of identical machines to minimize the makespan objective function. Understanding the exact approximability of the problem when the number of machines is a constan
With the wealth of high-throughput sequencing data generated by recent large-scale consortia, predictive gene expression modelling has become an important tool for integrative analysis of transcriptomic and epigenetic data. However, sequencing data-s
Sequences set is a mathematical model used in many applications. As the number of the sequences becomes larger, single sequence set model is not appropriate for the rapidly increasing problem sizes. For example, more and more text processing applicat
We consider the distributed version of the Multiple Knapsack Problem (MKP), where $m$ items are to be distributed amongst $n$ processors, each with a knapsack. We propose different distributed approximation algorithms with a tradeoff between time and
We consider the online makespan minimization problem on identical machines. Chen and Vestjens (ORL 1997) show that the largest processing time first (LPT) algorithm is 1.5-competitive. For the special case of two machines, Noga and Seiden (TCS 2001)