ﻻ يوجد ملخص باللغة العربية
Sequences set is a mathematical model used in many applications. As the number of the sequences becomes larger, single sequence set model is not appropriate for the rapidly increasing problem sizes. For example, more and more text processing applications separate a single big text file into multiple files before processing. For these applications, the underline mathematical model is multiple sequences sets (MSS). Though there is increasing use of MSS, there is little research on how to process MSS efficiently. To process multiple sequences sets, sequences are first distributed to different sets, and then sequences for each set are processed. Deriving effective algorithm for MSS processing is both interesting and challenging. In this paper, we have defined the cost functions and performance ratio for analysis of the quality of synthesis sequences. Based on these, the problem of Process of Multiple Sequences Sets (PMSS) is formulated. We have first proposed two greedy algorithms for the PMSS problem, which are based on generalization of algorithms for single sequences set. Then based on the analysis of the characteristics of multiple sequences sets, we have proposed the Distribution and Deposition (DDA) algorithm and DDA* algorithm for PMSS problem. In DDA algorithm, the sequences are first distributed to multiple sets according to their alphabet contents; then sequences in each set are deposited by the deposition algorithm. The DDA* algorithm differs from the DDA algorithm in that the DDA* algorithm distributes sequences by clustering based on sequence profiles. Experiments show that DDA and DDA* always output results with smaller costs than other algorithms, and DDA* outperforms DDA in most instances. The DDA and DDA* algorithms are also efficient both in time and space.
We consider the distributed version of the Multiple Knapsack Problem (MKP), where $m$ items are to be distributed amongst $n$ processors, each with a knapsack. We propose different distributed approximation algorithms with a tradeoff between time and
It was recently shown that a version of the greedy algorithm gives a construction of fault-tolerant spanners that is size-optimal, at least for vertex faults. However, the algorithm to construct this spanner is not polynomial-time, and the best-known
This paper proposes a general framework for adding linearizable iterators to a class of data structures that implement set operations. We introduce a condition on set operations, called local consistency, which informally states that set operations n
In this paper, we study the parallel query complexity of reconstructing biological and digital phylogenetic trees from simple queries involving their nodes. This is motivated from computational biology, data protection, and computer security settings
Dynamic Connectivity is a fundamental algorithmic graph problem, motivated by a wide range of applications to social and communication networks and used as a building block in various other algorithms, such as the bi-connectivity and the dynamic mini