ترغب بنشر مسار تعليمي؟ اضغط هنا

Filling in the details: Perceiving from low fidelity images

46   0   0.0 ( 0 )
 نشر من قبل Farahnaz Ahmed Wick
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Humans perceive their surroundings in great detail even though most of our visual field is reduced to low-fidelity color-deprived (e.g. dichromatic) input by the retina. In contrast, most deep learning architectures are computationally wasteful in that they consider every part of the input when performing an image processing task. Yet, the human visual system is able to perform visual reasoning despite having only a small fovea of high visual acuity. With this in mind, we wish to understand the extent to which connectionist architectures are able to learn from and reason with low acuity, distorted inputs. Specifically, we train autoencoders to generate full-detail images from low-detail foveations of those images and then measure their ability to reconstruct the full-detail images from the foveat



قيم البحث

اقرأ أيضاً

Drones or UAVs, equipped with different sensors, have been deployed in many places especially for urban traffic monitoring or last-mile delivery. It provides the ability to control the different aspects of traffic given real-time obeservations, an im portant pillar for the future of transportation and smart cities. With the increasing use of such machines, many previous state-of-the-art object detectors, who have achieved high performance on front facing cameras, are being used on UAV datasets. When applied to high-resolution aerial images captured from such datasets, they fail to generalize to the wide range of objects scales. In order to address this limitation, we propose an object detection method called Butterfly Detector that is tailored to detect objects in aerial images. We extend the concept of fields and introduce butterfly fields, a type of composite field that describes the spatial information of output features as well as the scale of the detected object. To overcome occlusion and viewing angle variations that can hinder the localization process, we employ a voting mechanism between related butterfly vectors pointing to the object center. We evaluate our Butterfly Detector on two publicly available UAV datasets (UAVDT and VisDrone2019) and show that it outperforms previous state-of-the-art methods while remaining real-time.
We have seen great progress in basic perceptual tasks such as object recognition and detection. However, AI models still fail to match humans in high-level vision tasks due to the lack of capacities for deeper reasoning. Recently the new task of visu al question answering (QA) has been proposed to evaluate a models capacity for deep image understanding. Previous works have established a loose, global association between QA sentences and images. However, many questions and answers, in practice, relate to local regions in the images. We establish a semantic link between textual descriptions and image regions by object-level grounding. It enables a new type of QA with visual answers, in addition to textual answers used in previous work. We study the visual QA tasks in a grounded setting with a large collection of 7W multiple-choice QA pairs. Furthermore, we evaluate human performance and several baseline models on the QA tasks. Finally, we propose a novel LSTM model with spatial attention to tackle the 7W QA tasks.
Paper-intensive industries like insurance, law, and government have long leveraged optical character recognition (OCR) to automatically transcribe hordes of scanned documents into text strings for downstream processing. Even in 2019, there are still many scanned documents and mail that come into businesses in non-digital format. Text to be extracted from real world documents is often nestled inside rich formatting, such as tabular structures or forms with fill-in-the-blank boxes or underlines whose ink often touches or even strikes through the ink of the text itself. Further, the text region could have random ink smudges or spurious strokes. Such ink artifacts can severely interfere with the performance of recognition algorithms or other downstream processing tasks. In this work, we propose DeepErase, a neural-based preprocessor to erase ink artifacts from text images. We devise a method to programmatically assemble real text images and real artifacts into realistic-looking dirty text images, and use them to train an artifact segmentation network in a weakly supervised manner, since pixel-level annotations are automatically obtained during the assembly process. In addition to high segmentation accuracy, we show that our cleansed images achieve a significant boost in recognition accuracy by popular OCR software such as Tesseract 4.0. Finally, we test DeepErase on out-of-distribution datasets (NIST SDB) of scanned IRS tax return forms and achieve double-digit improvements in accuracy. All experiments are performed on both printed and handwritten text. Code for all experiments is available at https://github.com/yikeqicn/DeepErase
When deep learning is applied to visual object recognition, data augmentation is often used to generate additional training data without extra labeling cost. It helps to reduce overfitting and increase the performance of the algorithm. In this paper we investigate if it is possible to use data augmentation as the main component of an unsupervised feature learning architecture. To that end we sample a set of random image patches and declare each of them to be a separate single-image surrogate class. We then extend these trivial one-element classes by applying a variety of transformations to the initial seed patches. Finally we train a convolutional neural network to discriminate between these surrogate classes. The feature representation learned by the network can then be used in various vision tasks. We find that this simple feature learning algorithm is surprisingly successful, achieving competitive classification results on several popular vision datasets (STL-10, CIFAR-10, Caltech-101).
Many real-world vision problems suffer from inherent ambiguities. In clinical applications for example, it might not be clear from a CT scan alone which particular region is cancer tissue. Therefore a group of graders typically produces a set of dive rse but plausible segmentations. We consider the task of learning a distribution over segmentations given an input. To this end we propose a generative segmentation model based on a combination of a U-Net with a conditional variational autoencoder that is capable of efficiently producing an unlimited number of plausible hypotheses. We show on a lung abnormalities segmentation task and on a Cityscapes segmentation task that our model reproduces the possible segmentation variants as well as the frequencies with which they occur, doing so significantly better than published approaches. These models could have a high impact in real-world applications, such as being used as clinical decision-making algorithms accounting for multiple plausible semantic segmentation hypotheses to provide possible diagnoses and recommend further actions to resolve the present ambiguities.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا