ترغب بنشر مسار تعليمي؟ اضغط هنا

H, He-like recombination spectra I: $l$-changing collisions for hydrogen

374   0   0.0 ( 0 )
 نشر من قبل Francisco Guzman
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hydrogen and helium emission lines in nebulae form by radiative recombination. This is a simple process which, in principle, can be described to very high precision. Ratios of He I and H I emission lines can be used to measure the He$^+$/H$^+$ abundance ratio to the same precision as the recombination rate coefficients. This paper investigates the controversy over the correct theory to describe dipole $l$-changing collisions ($nlrightarrow nl=lpm 1$) between energy-degenerate states within an $n$-shell. The work of Pengelly & Seaton (1964) has, for half-a-century, been considered the definitive study which solved the problem. Recent work by Vrinceanu et al.(2012) recommended the use of rate coefficients from a semi-classical approximation which are nearly an order of magnitude smaller than those of Pengelly & Seaton (1964), with the result that significantly higher densities are needed for the $nl$ populations to come into local thermodynamic equilibrium. Here, we compare predicted H~I emissivities from the two works and find widespread differences, of up to $approx 10$%. This far exceeds the 1% precision required to obtain the primordial He/H abundance ratio from observations so as to constrain Big Bang cosmologies. We recommend using the rate coefficients of Pengelly & Seaton (1964) for $l$-changing collisions, to describe the H recombination spectrum, based-on their quantum mechanical representation of the long-range dipole interaction.

قيم البحث

اقرأ أيضاً

Cosmological models can be constrained by determining primordial abundances. Accurate predictions of the He I spectrum are needed to determine the primordial helium abundance to a precision of $< 1$% in order to constrain Big Bang Nucleosynthesis mod els. Theoretical line emissivities at least this accurate are needed if this precision is to be achieved. In the first paper of this series, which focused on H I, we showed that differences in $l$-changing collisional rate coefficients predicted by three different theories can translate into 10% changes in predictions for H I spectra. Here we consider the more complicated case of He atoms, where low-$l$ subshells are not energy degenerate. A criterion for deciding when the energy separation between $l$ subshells is small enough to apply energy-degenerate collisional theories is given. Moreover, for certain conditions, the Bethe approximation originally proposed by Pengelly & Seaton (1964) is not sufficiently accurate. We introduce a simple modification of this theory which leads to rate coefficients which agree well with those obtained from pure quantal calculations using the approach of Vrinceanu et al. (2012). We show that the $l$-changing rate coefficients from the different theoretical approaches lead to differences of $sim 10$% in He I emissivities in simulations of H II regions using spectral code Cloudy.
At intermediate to high densities, electron (de-)excitation collisions are the dominant process for populating or depopulating high Rydberg states. In particular, the accurate knowledge of the energy changing ($n$-changing) collisional rates is deter minant for predicting the radio recombination spectra of gaseous nebula. The different datasets present in the literature come either from impact parameter calculations or semi-empirical fits and the rate coefficients agree within a factor of two. We show in this paper that these uncertainties cause errors lower than 5% in the emission of radio recombination lines (RRL) of most ionized plasmas of typical nebulae. However, in special circumstances where the transitions between Rydberg levels are amplified by maser effects, the errors can increase up to 20%. We present simulations of the optical depth and H$nalpha$ line emission of Active Galactic Nuclei (AGN) Broad Line Regions (BLRs) and the Orion Nebula Blister to showcase our findings.
216 - Lin Yan 2015
iPTF13ehe is a hydrogen-poor superluminous supernova (SLSN) at z=0.3434, with a slow-evolving light curve and spectral features similar to SN2007bi. It rises within (83-148)days (rest-frame) to reach a peak bolometric luminosity of 1.3x$10^{44}$erg/s , then decays very slowly at 0.015mag. per day. The measured ejecta velocity is 13000km/s. The inferred explosion characteristics, such as the ejecta mass (67-220$M_odot$), the total radiative and kinetic energy ($10^{51}$ & 2x$10^{53}$erg respectively), is typical of a slow-evolving H-poor SLSN event. However, the late-time spectrum taken at +251days reveals a Balmer Halpha emission feature with broad and narrow components, which has never been detected before among other H-poor SLSNe. The broad component has a velocity width of ~4500km/s and has a ~300km/s blue-ward shift relative to the narrow component. We interpret this broad H$alpha$ emission with luminosity of $sim$2$times10^{41}$,erg,s$^{-1}$ as resulting from the interaction between the supernova ejecta and a discrete H-rich shell, located at a distance of $sim4times10^{16}$,cm from the explosion site. This ejecta-CSM interaction causes the rest-frame r-band LC to brighten at late times. The fact that the late-time spectra are not completely absorbed by the shock ionized CSM shell implies that its Thomson scattering optical depth is likely <1, thus setting upper limits on the CSM mass <30$M_odot$ and the volume number density <4x$10^8cm^{-3}$. Of the existing models, a Pulsational Pair Instability Supernova model can naturally explain the observed 30$M_odot$ H-shell, ejected from a progenitor star with an initial mass of (95-150)$M_odot$ about 40 years ago. We estimate that at least $sim$15% of all SLSNe-I may have late-time Balmer emission lines.
61 - K. Wiersema 2011
In this paper we show how a self-consistent treatment of hydrogen and helium emission line fluxes of the hosts of long gamma-ray bursts can result in improved understanding of the dust properties in these galaxies. In particular, we find that even wi th modest signal to noise spectroscopy we can differentiate different values for R_V, the ratio of total to selective extinction. The inclusion of Paschen and Brackett lines, even at low signal to noise, greatly increase the accuracy of the derived reddening. This method is often associated with strong systematic errors, caused by the need for multiple instruments to cover the wide wavelength range, the requirement to separate stellar hydrogen absorption from the nebular emission, and because of the dependancy of the predicted line fluxes on the electron temperature. We show how these three systematic errors can be negated, by using suitable instrumentation (in particular X-shooter on the Very Large Telescope) and wide wavelength coverage. We demonstrate this method using an extensive optical and near-infrared spectroscopic campaign of the host galaxy of gamma-ray burst 060218 (SN 2006aj), obtained with FORS1, UVES and ISAAC on the VLT, covering a broad wavelength range with both high and low spectral resolution. We contrast our findings of this source with X-shooter data of a star forming region in the host of GRB 100316D, and show the improvement over existing published fluxes of long GRB hosts.
We compare the accuracy of various methods for determining the transfer of the diffuse Lyman continuum in HII regions, by comparing them with a high-resolution discrete-ordinate integration. We use these results to suggest how, in multidimensional dy namical simulations, the diffuse field may be treated with acceptable accuracy without requiring detailed transport solutions. The angular distribution of the diffuse field derived from the numerical integration provides insight into the likely effects of the diffuse field for various material distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا