ﻻ يوجد ملخص باللغة العربية
In this paper we show how a self-consistent treatment of hydrogen and helium emission line fluxes of the hosts of long gamma-ray bursts can result in improved understanding of the dust properties in these galaxies. In particular, we find that even with modest signal to noise spectroscopy we can differentiate different values for R_V, the ratio of total to selective extinction. The inclusion of Paschen and Brackett lines, even at low signal to noise, greatly increase the accuracy of the derived reddening. This method is often associated with strong systematic errors, caused by the need for multiple instruments to cover the wide wavelength range, the requirement to separate stellar hydrogen absorption from the nebular emission, and because of the dependancy of the predicted line fluxes on the electron temperature. We show how these three systematic errors can be negated, by using suitable instrumentation (in particular X-shooter on the Very Large Telescope) and wide wavelength coverage. We demonstrate this method using an extensive optical and near-infrared spectroscopic campaign of the host galaxy of gamma-ray burst 060218 (SN 2006aj), obtained with FORS1, UVES and ISAAC on the VLT, covering a broad wavelength range with both high and low spectral resolution. We contrast our findings of this source with X-shooter data of a star forming region in the host of GRB 100316D, and show the improvement over existing published fluxes of long GRB hosts.
Molecular species, most frequently H_2, are present in a small, but growing, number of gamma-ray burst (GRB) afterglow spectra at redshifts z~2-3, detected through their rest-frame UV absorption lines. In rare cases, lines of vibrationally excited st
Hydrogen and helium emission lines in nebulae form by radiative recombination. This is a simple process which, in principle, can be described to very high precision. Ratios of He I and H I emission lines can be used to measure the He$^+$/H$^+$ abunda
Cosmological models can be constrained by determining primordial abundances. Accurate predictions of the He I spectrum are needed to determine the primordial helium abundance to a precision of $< 1$% in order to constrain Big Bang Nucleosynthesis mod
We use galaxy catalogues constructed by combining high-resolution N-body simulations with semi-analytic models of galaxy formation to study the properties of Long Gamma-Ray Burst (LGRB) host galaxies. We assume that LGRBs originate from the death of
The unequivocal, spectroscopic detection of the 2175 bump in extinction curves outside the Local Group is rare. To date, the properties of the bump have been examined in only two GRB afterglows (GRB 070802 and GRB 080607). In this work we analyse in