ترغب بنشر مسار تعليمي؟ اضغط هنا

Olivier Chesneaus work on novae

60   0   0.0 ( 0 )
 نشر من قبل Florentin Millour
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Florentin Millour




اسأل ChatGPT حول البحث

Olivier Chesneau founded a brand new field of observational astrophysics with his attempts to resolve the novae expanding fireball from the very first days of the explosion. With the images he could get, he showed that novae do indeed explode in an aspherical way, leading to a change of paradigm for the physics of these yet-poorly understood catastrophic systems. He also set the stage for a new way of estimating novae distances, by directly measuring the sky-size of the fireball and comparing it with spectroscopic scales, taking into account the tremendous effects of the fireball geometry.



قيم البحث

اقرأ أيضاً

Olivier Chesneau challenged several fields of observational stellar astrophysics with bright ideas and an impressive amount of work to make them real in the span of his career, from his first paper on P Cygni in 2000, up to his last one on V838 Mon i n 2014. He was using all the so-called high-angular resolution techniques since it helped his science to be made, namely study in details the inner structure of the environments around stars, be it small mass (AGBs), more massive (supergiant stars), or explosives (Novae). I will focus here on his work on massive stars.
57 - Lagadec Eric 2015
During his too short career, Olivier Chesneau pioneered the study of the circumstellar environments of low mass evolved stars using very high angular resolution techniques. He applied state of the art high angular resolution techniques, such as optic al interferometry and adaptive optics imaging, to the the study of a variety of objects, from AGB stars to Planetary Nebulae, via e.g. Born Again stars, RCB stars and Novae. I present here an overview of this work and most important results by focusing on the paths he followed and key encounters he made to reach these results. Olivier liked to work in teams and was very strong at linking people with complementary expertises to whom he would communicate his enthusiasm and sharp ideas. His legacy will live on through the many people he inspired.
218 - M. J. Darnley 2011
Of the approximately 400 known Galactic classical novae, only ten of them, the recurrent novae, have been seen to erupt more than once. At least eight of these recurrents are known to harbor evolved secondary stars, rather than the main sequence seco ndaries typical in classical novae. In this paper, we propose a new nova classification system, based solely on the evolutionary state of the secondary, and not (like the current schemes) based on the properties of the outbursts. Using archival optical and near-infrared photometric observations of a sample of thirty eight quiescent Galactic novae we show that the evolutionary state of the secondary star in a quiescent system can predicted and several objects are identified for follow-up observations; CI Aql, V2487 Oph, DI Lac and EU Sct.
Novae are the observable outcome of a transient thermonuclear runaway on the surface of an accreting white dwarf in a close binary system. Their high peak luminosity renders them visible in galaxies out beyond the distance of the Virgo Cluster. Over the past century, surveys of extragalactic novae, particularly within the nearby Andromeda Galaxy, have yielded substantial insights regarding the properties of their populations and sub-populations. The recent decade has seen the first detailed panchromatic studies of individual extragalactic novae and the discovery of two probably related sub-groups: the faint-fast and the rapid recurrent novae. In this review we summarise the past 100 years of extragalactic efforts, introduce the rapid recurrent sub-group, and look in detail at the remarkable faint-fast, and rapid recurrent, nova M31N 2008-12a. We end with a brief look forward, not to the next 100 years, but the next few decades, and the study of novae in the upcoming era of wide-field and multi-messenger time-domain surveys.
Recurrent novae (RNe) are cataclysmic variables with two or more nova eruptions within a century. Classical novae (CNe) are similar systems with only one such eruption. Many of the so-called CNe are actually RNe for which only one eruption has been d iscovered. Since RNe are candidate Type Ia supernova progenitors, it is important to know whether there are enough in our galaxy to provide the supernova rate, and therefore to know how many RNe are masquerading as CNe. To quantify this, we collected all available information on the light curves and spectra of a Galactic, time-limited sample of 237 CNe and the 10 known RNe, as well as exhaustive discovery efficiency records. We recognize RNe as having (a) outburst amplitude smaller than 14.5 - 4.5 * log(t_3), (b) orbital period >0.6 days, (c) infrared colors of J-H > 0.7 mag and H-K > 0.1 mag, (d) FWHM of H-alpha > 2000 km/s, (e) high excitation lines, such as Fe X or He II near peak, (f) eruption light curves with a plateau, and (g) white dwarf mass greater than 1.2 M_solar. Using these criteria, we identify V1721 Aql, DE Cir, CP Cru, KT Eri, V838 Her, V2672 Oph, V4160 Sgr, V4643 Sgr, V4739 Sgr, and V477 Sct as strong RN candidates. We evaluate the RN fraction amongst the known CNe using three methods to get 24% +/- 4%, 12% +/- 3%, and 35% +/- 3%. With roughly a quarter of the 394 known Galactic novae actually being RNe, there should be approximately a hundred such systems masquerading as CNe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا