ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Levy flights and multifractality of dipolar excitations in a random system

99   0   0.0 ( 0 )
 نشر من قبل Xiaolong Deng
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider dipolar excitations propagating via dipole-induced exchange among immobile molecules randomly spaced in a lattice. The character of the propagation is determined by long-range hops (Levy flights). We analyze the eigen-energy spectra and the multifractal structure of the wavefunctions. In 1D and 2D all states are localized, although in 2D the localization length can be extremely large leading to an effective localization-delocalization crossover in realistic systems. In 3D all eigenstates are extended but not always ergodic, and we identify the energy intervals of ergodic and non-ergodic states. The reduction of the lattice filling induces an ergodic to non-ergodic transition, and the excitations are mostly non-ergodic at low filling.



قيم البحث

اقرأ أيضاً

It has recently been shown that interference effects in disordered systems give rise to two non-trivial structures: the coherent backscattering (CBS) peak, a well-known signature of interference effects in the presence of disorder, and the coherent f orward scattering (CFS) peak, which emerges when Anderson localization sets in. We study here the CFS effect in the presence of quantum multifractality, a fundamental property of several systems, such as the Anderson model at the metal-insulator transition. We focus on Floquet systems, and find that the CFS peak shape and its peak height dynamics are generically controlled by the multifractal dimensions $D_1$ and $D_2$, and by the spectral form factor. We check our results using a 1D Floquet system whose states have multifractal properties controlled by a single parameter. Our predictions are fully confirmed by numerical simulations and analytic perturbation expansions on this model. Our results, which we believe to be generic, provide an original and direct way to detect and characterize multifractality in experimental systems.
We study transport properties of graphene with anisotropically distributed on-site impurities (adatoms) that are randomly placed on every third line drawn along carbon bonds. We show that stripe states characterized by strongly suppressed back-scatte ring are formed in this model in the direction of the lines. The system reveals Levy-flight transport in stripe direction such that the corresponding conductivity increases as the square root of the system length. Thus, adding this type of disorder to clean graphene near the Dirac point strongly enhances the conductivity, which is in stark contrast with a fully random distribution of on-site impurities which leads to Anderson localization. The effect is demonstrated both by numerical simulations using the Kwant code and by an analytical theory based on the self-consistent $T$-matrix approximation.
The random dipolar magnet LiHo$_x$Y$_{1-x}$F$_4$ enters a strongly frustrated regime for small Ho$^{3+}$ concentrations with $x<0.05$. In this regime, the magnetic moments of the Ho$^{3+}$ ions experience small quantum corrections to the common Ising approximation of LiHo$_x$Y$_{1-x}$F$_4$, which lead to a $Z_2$-symmetry breaking and small, degeneracy breaking energy shifts between different eigenstates. Here we show that destructive interference between two almost degenerate excitation pathways burns spectral holes in the magnetic susceptibility of strongly driven magnetic moments in LiHo$_x$Y$_{1-x}$F$_4$. Such spectral holes in the susceptibility, microscopically described in terms of Fano resonances, can already occur in setups of only two or three frustrated moments, for which the driven level scheme has the paradigmatic $Lambda$-shape. For larger clusters of magnetic moments, the corresponding level schemes separate into almost isolated many-body $Lambda$-schemes, in the sense that either the transition matrix elements between them are negligibly small or the energy difference of the transitions is strongly off-resonant to the drive. This enables the observation of Fano resonances, caused by many-body quantum corrections to the common Ising approximation also in the thermodynamic limit. We discuss its dependence on the driving strength and frequency as well as the crucial role that is played by lattice dissipation.
At low energy, the dynamics of excitations of many physical systems are locally constrained. Examples include frustrated anti-ferromagnets, fractional quantum Hall fluids and Rydberg atoms in the blockaded regime. Can such locally constrained systems be fully many-body localized (MBL)? In this article, we answer this question affirmatively and elucidate the structure of the accompanying quasi-local integrals of motion. By studying disordered spin chains subject to a projection constraint in the $z$-direction, we show that full MBL is stable at strong $z$-field disorder and identify a new mechanism of localization through resonance at strong transverse disorder. However MBL is not guaranteed; the constraints can `frustrate the tendency of the spins to align with the transverse fields and lead to full thermalization or criticality. We further provide evidence that the transition is discontinuous in local observables with large sample-to-sample variations. Our study has direct consequences for current quench experiments in Rydberg atomic chains.
We show that quantum wavepackets exhibit a sharp macroscopic peak as they spread in the vicinity of the critical point of the Anderson transition. The peak gives a direct access to the mutifractal properties of the wavefunctions and specifically to t he multifractal dimension $d_2$. Our analysis is based on an experimentally realizable setup, the quantum kicked rotor with quasi-periodic temporal driving, an effectively 3-dimensional disordered system recently exploited to explore the physics of the Anderson transition with cold atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا