ﻻ يوجد ملخص باللغة العربية
We consider dipolar excitations propagating via dipole-induced exchange among immobile molecules randomly spaced in a lattice. The character of the propagation is determined by long-range hops (Levy flights). We analyze the eigen-energy spectra and the multifractal structure of the wavefunctions. In 1D and 2D all states are localized, although in 2D the localization length can be extremely large leading to an effective localization-delocalization crossover in realistic systems. In 3D all eigenstates are extended but not always ergodic, and we identify the energy intervals of ergodic and non-ergodic states. The reduction of the lattice filling induces an ergodic to non-ergodic transition, and the excitations are mostly non-ergodic at low filling.
It has recently been shown that interference effects in disordered systems give rise to two non-trivial structures: the coherent backscattering (CBS) peak, a well-known signature of interference effects in the presence of disorder, and the coherent f
We study transport properties of graphene with anisotropically distributed on-site impurities (adatoms) that are randomly placed on every third line drawn along carbon bonds. We show that stripe states characterized by strongly suppressed back-scatte
The random dipolar magnet LiHo$_x$Y$_{1-x}$F$_4$ enters a strongly frustrated regime for small Ho$^{3+}$ concentrations with $x<0.05$. In this regime, the magnetic moments of the Ho$^{3+}$ ions experience small quantum corrections to the common Ising
At low energy, the dynamics of excitations of many physical systems are locally constrained. Examples include frustrated anti-ferromagnets, fractional quantum Hall fluids and Rydberg atoms in the blockaded regime. Can such locally constrained systems
We show that quantum wavepackets exhibit a sharp macroscopic peak as they spread in the vicinity of the critical point of the Anderson transition. The peak gives a direct access to the mutifractal properties of the wavefunctions and specifically to t