ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical control over perpendicular magnetization switching driven by spin-orbit torques

135   0   0.0 ( 0 )
 نشر من قبل Xiufeng Han Prof. Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Flexible control of magnetization switching by electrical manners is crucial for applications of spin-orbitronics. Besides of a switching current that is parallel to an applied field, a bias current that is normal to the switching current is introduced to tune the magnitude of effective damping-like and field-like torques and further to electrically control magnetization switching. Symmetrical and asymmetrical control over the critical switching current by the bias current with opposite polarities is both realized in Pt/Co/MgO and $alpha$-Ta/CoFeB/MgO systems, respectively. This research not only identifies the influences of field-like and damping-like torques on switching process but also demonstrates an electrical method to control it.



قيم البحث

اقرأ أيضاً

Current-induced spin-orbit torques (SOTs) represent one of the most effective ways to manipulate the magnetization in spintronic devices. The orthogonal torque-magnetization geometry, the strong damping, and the large domain wall velocities inherent to materials with strong spin-orbit coupling make SOTs especially appealing for fast switching applications in nonvolatile memory and logic units. So far, however, the timescale and evolution of the magnetization during the switching process have remained undetected. Here, we report the direct observation of SOT-driven magnetization dynamics in Pt/Co/AlO$_x$ dots during current pulse injection. Time-resolved x-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a sub-ns current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current, and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of both damping-like and field-like SOT and show that reproducible switching events can be obtained for over $10^{12}$ reversal cycles.
103 - Yi Wang , Dapeng Zhu , Yang Wu 2017
Topological insulators (TIs) with spin momentum locked topological surface states (TSS) are expected to exhibit a giant spin-orbit torque (SOT) in the TI/ferromagnet systems. To date, the TI SOT driven magnetization switching is solely reported in a Cr doped TI at 1.9 K. Here, we directly show giant SOT driven magnetization switching in a Bi2Se3/NiFe heterostructure at room temperature captured using a magneto-optic Kerr effect microscope. We identify a large charge to spin conversion efficiency of ~1-1.75 in the thin TI films, where the TSS is dominant. In addition, we find the current density required for the magnetization switching is extremely low, ~6x10^5 A cm-2, which is one to two orders of magnitude smaller than that with heavy metals. Our demonstration of room temperature magnetization switching of a conventional 3d ferromagnet using Bi2Se3 may lead to potential innovations in TI based spintronic applications.
Deterministic magnetization switching using spin-orbit torque (SOT) has recently emerged as an efficient means to electrically control the magnetic state of ultrathin magnets. The SOT switching still lacks in oscillatory switching characteristics ove r time, therefore, it is limited to bipolar operation where a change in polarity of the applied current or field is required for bistable switching. The coherent rotation based oscillatory switching schemes cannot be applied to SOT because the SOT switching occurs through expansion of magnetic domains. Here, we experimentally achieve oscillatory switching in incoherent SOT process by controlling domain wall dynamics. We find that a large field-like component can dynamically influence the domain wall chirality which determines the direction of SOT switching. Consequently, under nanosecond current pulses, the magnetization switches alternatively between the two stable states. By utilizing this oscillatory switching behavior we demonstrate a unipolar deterministic SOT switching scheme by controlling the current pulse duration.
297 - Y. Sheng , Y. C. Li , X. Q. Ma 2018
We demonstrated current-induced four-state magnetization switching in a trilayer system using spin-orbit torques. The memory device contains two Co layers with different perpendicular magnetic anisotropy, separated by a space layer of Pt. Making use of the opposite spin current at the top and bottom surface of the middle Pt layer, magnetization of both Co layers can be switched oppositely by the spin-orbit torques with different critical switching currents. By changing the current pulse forms through the device, the four magnetic states memory was demonstrated. Our device provides a new idea for the design of low power and high density spin-orbit torque devices.
Continuous switching driven by spin-orbit torque (SOT) is preferred to realize neuromorphic computing in a spintronic manner. Here we have applied focused ion beam (FIB) to selectively illuminate patterned regions in a Pt/Co/MgO strip with perpendicu lar magnetic anisotropy (PMA), soften the illuminated areas and realize the continuous switching by a SOT-driven nucleation process. It is found that a large in-plane field is a benefit to reduce the nucleation barrier, increase the number of nucleated domains and intermediate states during the switching progress, and finally flatten the switching curve. We proposed a phenomenological model for descripting the current dependence of magnetization and the dependence of the number of nucleation domains on the applied current and magnetic field. This study can thus promote the birth of SOT devices, which are promising in neuromorphic computing architectures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا