ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of sterile neutrino dark matter on core-collapse supernovae

90   0   0.0 ( 0 )
 نشر من قبل MacKenzie Warren
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We summarize the impact of sterile neutrino dark matter on core-collapse supernova explosions. We explore various oscillations between electron neutrinos or mixed $mu-tau$ neutrinos and right-handed sterile neutrinos that may occur within a core-collapse supernova. In particular, we consider sterile neutrino masses and mixing angles that are consistent with sterile neutrino dark matter candidates as indicated by recent X-ray flux measurements. We find that the interpretation of the observed 3.5 keV X-ray excess as due to a decaying 7 keV sterile neutrino that comprises 100% of the dark matter would have almost no observable effect on supernova explosions. However, in the more realistic case in which the decaying sterile neutrino comprises only a small fraction of the total dark matter density due to the presence of other sterile neutrino flavors, WIMPs, etc., a larger mixing angle is allowed. In this case a 7 keV sterile neutrino could have a significant impact on core-collapse supernovae. We also consider mixing between $mu-tau$ neutrinos and sterile neutrinos. We find, however, that this mixing does not significantly alter the explosion and has no observable effect on the neutrino luminosities at early times.

قيم البحث

اقرأ أيضاً

We have explored the impact of sterile neutrino dark matter on core-collapse supernova explosions. We have included oscillations between electron neutrinos or mixed $mu,tau$ neutrinos and right-handed sterile neutrinos into a supernova model. We have chosen sterile neutrino masses and mixing angles that are consistent with sterile neutrino dark matter candidates as indicated by recent x-ray flux measurements. Using these simulations, we have explored the impact of sterile neutrinos on the core bounce and shock reheating. We find that, for ranges of sterile neutrino mass and mixing angle consistent with most dark matter constraints, the shock energy can be significantly enhanced and even a model that does not explode can be made to explode. In addition, we have found that the presence of a sterile neutrino may lead to detectable changes in the observed neutrino luminosities.
We have made core-collapse supernova simulations that allow oscillations between electron neutrinos (or their anti particles) with right-handed sterile neutrinos. We have considered a range of mixing angles and sterile neutrino masses including those consistent with sterile neutrinos as a dark matter candidate. We examine whether such oscillations can impact the core bounce and shock reheating in supernovae. We identify the optimum ranges of mixing angles and masses that can dramatically enhance the supernova explosion by efficiently transporting electron anti-neutrinos from the core to behind the shock where they provide additional heating leading to much larger explosion kinetic energies. We show that this effect can cause stars to explode that otherwise would have collapsed. We find that an interesting periodicity in the neutrino luminosity develops due to a cycle of depletion of the neutrino density by conversion to sterile neutrinos that shuts off the conversion, followed by a replenished neutrino density as neutrinos transport through the core.
We present a comprehensive analysis of constraints on the sterile neutrino as a dark matter candidate. The minimal production scenario with a standard thermal history and negligible cosmological lepton number is in conflict with conservative radiativ e decay constraints from the cosmic X-ray background in combination with stringent small-scale structure limits from the Lyman-alpha forest. We show that entropy release through massive particle decay after production does not alleviate these constraints. We further show that radiative decay constraints from local group dwarf galaxies are subject to large uncertainties in the dark matter density profile of these systems. Within the strongest set of constraints, resonant production of cold sterile neutrino dark matter in non-zero lepton number cosmologies remains allowed.
We investigate the impact of asymmetric neutrino-emissions on explosive nucleosynthesis in core-collapse supernovae (CCSNe) of progenitors with a mass range of 9.5 to 25$M_{odot}$. We perform axisymmetric, hydrodynamic simulations of the CCSN explosi on with a simplified neutrino-transport, in which anti-correlated dipolar emissions of $ u_{rm e}$ and ${bar u}_{rm e}$ are imposed. We then evaluate abundances and masses of the CCSN ejecta in a post-processing manner. We find that the asymmetric $ u$-emission leads to the abundant ejection of $p$- and $n$-rich matter in the high-$ u_{rm e}$ and -${bar u}_{rm e}$ hemispheres, respectively. It substantially affects the abundances of the ejecta for elements heavier than Ni regardless of progenitors, although those elements lighter than Ca are less sensitive. Based on these results, we calculate the IMF-averaged abundances of the CCSN ejecta with taking into account the contribution from Type Ia SNe. For $m_{rm asy} = 10/3%$ and $10%$, where $m_{rm asy}$ denotes the asymmetric degree of the dipole components in the neutrino emissions, the averaged abundances for elements lighter than Y are comparable to those of the solar abundances, whereas those of elements heavier than Ge are overproduced in the case with $m_{rm asy} ge 30%$. Our result also suggests that the effect of the asymmetric neutrino emissions is imprinted in the difference of abundance ratio of [Ni/Fe] and [Zn/Fe] between the high-$ u_{rm e}$ and -${bar u}_{rm e}$ hemispheres, indicating that the future spectroscopic X-ray observations of a CCSN remnant will bring evidence of the asymmetric neutrino emissions if exist.
We present a model where sterile neutrinos with rest masses in the range ~ keV to ~ MeV can be the dark matter and be consistent with all laboratory, cosmological, large-scale structure, as well as x-ray constraints. These sterile neutrinos are assum ed to freeze out of thermal and chemical equilibrium with matter and radiation in the very early Universe, prior to an epoch of prodigious entropy generation (dilution) from out-of-equilibrium decay of heavy particles. In this work, we consider heavy, entropy-producing particles in the ~ TeV to ~ EeV rest-mass range, possibly associated with new physics at high-energy scales. The process of dilution can give the sterile neutrinos the appropriate relic densities, but it also alters their energy spectra so that they could act like cold dark matter, despite relatively low rest masses as compared to conventional dark matter candidates. Moreover, since the model does not rely on active-sterile mixing for producing the relic density, the mixing angles can be small enough to evade current x-ray or lifetime constraints. Nevertheless, we discuss how future x-ray observations, future lepton number constraints, and future observations and sophisticated simulations of large-scale structure could, in conjunction, provide evidence for this model and/or constrain and probe its parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا