ﻻ يوجد ملخص باللغة العربية
Increases in atmospheric CO2 and CH4 result from a combination of forcing from anthropogenic emissions and Earth System feedbacks that reduce or amplify the effects of those emissions on atmospheric concentrations. Despite decades of research carbon-climate feedbacks remain poorly quantified. The impact of these uncertainties on future climate are of increasing concern, especially in the wake of recent climate negotiations. Emissions, long concentrated in the developed world, are now shifting to developing countries, where the emissions inventories have larger uncertainties. The fraction of anthropogenic CO2 remaining in the atmosphere has remained remarkably constant over the last 50 years. Will this change in the future as the climate evolves? Concentrations of CH4, the 2nd most important greenhouse gas, which had apparently stabilized, have recently resumed their increase, but the exact cause for this is unknown. While greenhouse gases affect the global atmosphere, their sources and sinks are remarkably heterogeneous in time and space, and traditional in situ observing systems do not provide the coverage and resolution to attribute the changes to these greenhouse gases to specific sources or sinks. In the past few years, space-based technologies have shown promise for monitoring carbon stocks and fluxes. Advanc
Though the Boltzmann-Gibbs framework of equilibrium statistical mechanics has been successful in many arenas, it is clearly inadequate for describing many interesting natural phenomena driven far from equilibrium. The simplest step towards that goal
Integrated assessment models (IAMs) are valuable tools that consider the interactions between socioeconomic systems and the climate system. Decision-makers and policy analysts employ IAMs to calculate the marginalized monetary cost of climate damages
There is ongoing interest in the global entropy production rate as a climate diagnostic and predictor, but progress has been limited by ambiguities in its definition; different conceptual boundaries of the climate system give rise to different intern
This article discussesl a few of the problems that arise in geophysical fluid dynamics and climate that are associated with the presence of moisture in the air, its condensation and release of latent heat. Our main focus is Earths atmosphere but we a
Assessments of impacts of climate change and future projections over the Indian region, have so far relied on a single regional climate model (RCM) - eg., the PRECIS RCM of the Hadley Centre, UK. While these assessments have provided inputs to variou