ﻻ يوجد ملخص باللغة العربية
By solving the rate equation in an expanding quark-gluon plasma, we study thermal production of charm quarks in central Pb+Pb collisions at the Future Circular Collider. With the charm quark production cross section taken from the perturbative QCD at the next-to-leading order, we find that charm quark production from the quark-gluon plasma can be appreciable compared to that due to initial hard scattering between colliding nucleons.
The Future Circular Collider (FCC) design study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode including proton and nucleus beams, more tha
Understanding the hadronization of the quark-gluon plasma (QGP) remains a challenging problem in the study of strong-interaction matter as produced in ultrarelativistic heavy-ion collisions (URHICs). The large mass of heavy quarks renders them excell
We study the production of (hyper-)nuclei and di-baryons in most central heavy Ion collisions at energies of $E_{lab}=1-160 A$ GeV. In particular we are interested in clusters produced from the hot and dense fireball. The formation rate of strange an
Dileptons are considered as one of the cleanest signals of the quark-gluon plasma (QGP), however, the QGP radiation is masked by many background sources from either hadronic decays or semileptonic decays from correlated charm pairs. In this study we
Different orientations of $alpha$-clustered carbon nuclei colliding with heavy ions can result in a large variation in the value of anisotropic flow. Thus, photon flow observables from clustered ${rm^{12}C}$ and ${rm^{197}Au}$ collisions could be a p