ترغب بنشر مسار تعليمي؟ اضغط هنا

On Equivalence of Likelihood Maximization of Stochastic Block Model and Constrained Nonnegative Matrix Factorization

74   0   0.0 ( 0 )
 نشر من قبل Zhong-Yuan Zhang
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Community structures detection in complex network is important for understanding not only the topological structures of the network, but also the functions of it. Stochastic block model and nonnegative matrix factorization are two widely used methods for community detection, which are proposed from different perspectives. In this paper, the relations between them are studied. The logarithm of likelihood function for stochastic block model can be reformulated under the framework of nonnegative matrix factorization. Besides the model equivalence, the algorithms employed by the two methods are different. Preliminary numerical experiments are carried out to compare the behaviors of the algorithms.



قيم البحث

اقرأ أيضاً

Community structures detection is one of the fundamental problems in complex network analysis towards understanding the topology structures of the network and the functions of it. Nonnegative matrix factorization (NMF) is a widely used method for com munity detection, and modularity Q and modularity density D are criteria to evaluate the quality of community structures. In this paper, we establish the connections between Q, D and NMF for the first time. Q maximization can be approximately reformulated under the framework of NMF with Frobenius norm, especially when $n$ is large, and D maximization can also be reformulated under the framework of NMF. Q minimization can be reformulated under the framework of NMF with Kullback-Leibler divergence. We propose new methods for community structures detection based on the above findings, and the experimental results on synthetic networks demonstrate their effectiveness.
140 - Stephen A. Vavasis 2007
Nonnegative matrix factorization (NMF) has become a prominent technique for the analysis of image databases, text databases and other information retrieval and clustering applications. In this report, we define an exact version of NMF. Then we establ ish several results about exact NMF: (1) that it is equivalent to a problem in polyhedral combinatorics; (2) that it is NP-hard; and (3) that a polynomial-time local search heuristic exists.
Fully unsupervised topic models have found fantastic success in document clustering and classification. However, these models often suffer from the tendency to learn less-than-meaningful or even redundant topics when the data is biased towards a set of features. For this reason, we propose an approach based upon the nonnegative matrix factorization (NMF) model, deemed textit{Guided NMF}, that incorporates user-designed seed word supervision. Our experimental results demonstrate the promise of this model and illustrate that it is competitive with other methods of this ilk with only very little supervision information.
173 - Chao Yan , Hui-Min Cheng , Xin Liu 2018
Community structures detection in signed network is very important for understanding not only the topology structures of signed networks, but also the functions of them, such as information diffusion, epidemic spreading, etc. In this paper, we develo p a joint nonnegative matrix factorization model to detect community structures. In addition, we propose modified partition density to evaluate the quality of community structures. We use it to determine the appropriate number of communities. The effectiveness of our approach is demonstrated based on both synthetic and real-world networks.
In recent years, semi-supervised multi-view nonnegative matrix factorization (MVNMF) algorithms have achieved promising performances for multi-view clustering. While most of semi-supervised MVNMFs have failed to effectively consider discriminative in formation among clusters and feature alignment from multiple views simultaneously. In this paper, a novel Discriminatively Constrained Semi-Supervised Multi-View Nonnegative Matrix Factorization (DCS^2MVNMF) is proposed. Specifically, a discriminative weighting matrix is introduced for the auxiliary matrix of each view, which enhances the inter-class distinction. Meanwhile, a new graph regularization is constructed with the label and geometrical information. In addition, we design a new feature scale normalization strategy to align the multiple views and complete the corresponding iterative optimization schemes. Extensive experiments conducted on several real world multi-view datasets have demonstrated the effectiveness of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا