ﻻ يوجد ملخص باللغة العربية
In this paper, we develop an analytical framework for the initial access (a.k.a. Base Station (BS) discovery) in a millimeter-wave (mm-wave) communication system and propose an effective strategy for transmitting the Reference Signals (RSs) used for BS discovery. Specifically, by formulating the problem of BS discovery at User Equipments (UEs) as hypothesis tests, we derive a detector based on the Generalised Likelihood Ratio Test (GLRT) and characterise the statistical behaviour of the detector. The theoretical results obtained allow analysis of the impact of key system parameters on the performance of BS discovery, and show that RS transmission with narrow beams may not be helpful in improving the overall BS discovery performance due to the cost of spatial scanning. Using the method of large deviations, we identify the desirable beam pattern that minimises the average miss-discovery probability of UEs within a targeted detectable region. We then propose to transmit the RS with sequential scanning, using a pre-designed codebook with narrow and/or wide beams to approximate the desirable patterns. The proposed design allows flexible choices of the codebook sizes and the associated beam widths to better approximate the desirable patterns. Numerical results demonstrate the effectiveness of the proposed method.
This paper studies the transmit beamforming in a downlink integrated sensing and communication (ISAC) system, where a base station (BS) equipped with a uniform linear array (ULA) sends combined information-bearing and dedicated radar signals to simul
We characterize the rate coverage distribution for a spectrum-shared millimeter wave downlink cellular network. Each of multiple cellular operators owns separate mmWave bandwidth, but shares the spectrum amongst each other while using dynamic inter-o
Multiple-input multiple-output (MIMO) broadcast channels (BCs) (MIMO-BCs) with perfect channel state information (CSI) at the transmitter are considered. As joint user selection (US) and vector precoding (VP) (US-VP) with zero-forcing transmit beamfo
Intelligent reflecting surface (IRS) is a promising solution to build a programmable wireless environment for future communication systems, in which the reflector elements steer the incident signal in fully customizable ways by passive beamforming. I
This paper considers the design of beamforming for orthogonal time frequency space modulation assisted non-orthogonal multiple access (OTFS-NOMA) networks, in which a high-mobility user is sharing the spectrum with multiple low-mobility NOMA users. I