ترغب بنشر مسار تعليمي؟ اضغط هنا

Spiral-induced velocity and metallicity patterns in a cosmological zoom simulation of a Milky Way-sized galaxy

92   0   0.0 ( 0 )
 نشر من قبل Robert Grand
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a high resolution cosmological zoom simulation of a Milky Way-sized halo to study the observable features in velocity and metallicity space associated with the dynamical influence of spiral arms. For the first time, we demonstrate that spiral arms, that form in a disc in a fully cosmological environment with realistic galaxy formation physics, drive large-scale systematic streaming motions. In particular, on the trailing edge of the spiral arms the peculiar galacto-centric radial and azimuthal velocity field is directed radially outward and azimuthally backward, whereas it is radially inward and azimuthally forward on the leading edge. Owing to the negative radial metallicity gradient, this systematic motion drives, at a given radius, an azimuthal variation in the residual metallicity that is characterised by a metal rich trailing edge and a metal poor leading edge. We show that these signatures are theoretically observable in external galaxies with Integral Field Unit instruments such as VLT/MUSE, and if detected, would provide evidence for large-scale systematic radial migration driven by spiral arms.



قيم البحث

اقرأ أيضاً

We present a suite of high-resolution cosmological zoom-in simulations to $z=4$ of a $10^{12},{rm M}_{odot}$ halo at $z=0$, obtained using seven contemporary astrophysical simulation codes widely used in the numerical galaxy formation community. Phys ics prescriptions for gas cooling, heating, and star formation, are similar to the ones used in our previous {it AGORA} disk comparison but now account for the effects of cosmological processes. In this work, we introduce the most careful comparison yet of galaxy formation simulations run by different code groups, together with a series of four calibration steps each of which is designed to reduce the number of tunable simulation parameters adopted in the final run. After all the participating code groups successfully completed the calibration steps, we reach a suite of cosmological simulations with similar mass assembly histories down to $z=4$. With numerical accuracy that resolves the internal structure of a target halo, we find that the codes overall agree well with one another in e.g., gas and stellar properties, but also show differences in e.g., circumgalactic medium properties. We argue that, if adequately tested in accordance with our proposed calibration steps and common parameters, the results of high-resolution cosmological zoom-in simulations can be robust and reproducible. New code groups are invited to join this comparison by generating equivalent models by adopting the common initial conditions, the common easy-to-implement physics package, and the proposed calibration steps. Further analyses of the simulations presented here will be in forthcoming reports from our Collaboration.
126 - Robert J.J. Grand 2015
We investigate the kinematic signatures induced by spiral and bar structure in a set of simulations of Milky Way-sized spiral disc galaxies. The set includes test particle simulations that follow a quasi-stationary density wave-like scenario with rig idly rotating spiral arms, and $N$-body simulations that host a bar and transient, co-rotating spiral arms. From a location similar to that of the Sun, we calculate the radial, tangential and line-of-sight peculiar velocity fields of a patch of the disc and quantify the fluctuations by computing the power spectrum from a two-dimensional Fourier transform. We find that the peculiar velocity power spectrum of the simulation with a bar and transient, co-rotating spiral arms fits very well to that of APOGEE red clump star data, while the quasi-stationary density wave spiral model without a bar does not. We determine that the power spectrum is sensitive to the number of spiral arms, spiral arm pitch angle and position with respect to the spiral arm. However, it is necessary to go beyond the line of sight velocity field in order to distinguish fully between the various spiral models with this method. We compute the power spectrum for different regions of the spiral discs, and discuss the application of this analysis technique to external galaxies.
156 - L. G. Hou 2009
The spiral structure of our Milky Way Galaxy is not yet known. HII regions and giant molecular clouds are the most prominent spiral tracers. We collected the spiral tracer data of our Milky Way from the literature, namely, HII regions and giant molec ular clouds (GMCs). With weighting factors based on the excitation parameters of HII regions or the masses of GMCs, we fitted the distribution of these tracers with models of two, three, four spiral-arms or polynomial spiral arms. The distances of tracers, if not available from stellar or direct measurements, were estimated kinetically from the standard rotation curve of Brand & Blitz (1993) with $R_0$=8.5 kpc, and $Theta_0$=220 km s$^{-1}$ or the newly fitted rotation curves with $R_0$=8.0 kpc and $Theta_0$=220 km s$^{-1}$ or $R_0$=8.4 kpc and $Theta_0$=254 km s$^{-1}$. We found that the two-arm logarithmic model cannot fit the data in many regions. The three- and the four-arm logarithmic models are able to connect most tracers. However, at least two observed tangential directions cannot be matched by the three- or four-arm model. We composed a polynomial spiral arm model, which can not only fit the tracer distribution but also match observed tangential directions. Using new rotation curves with $R_0$=8.0 kpc and $Theta_0$=220 km s$^{-1}$ and $R_0$=8.4 kpc and $Theta_0$=254 km s$^{-1}$ for the estimation of kinematic distances, we found that the distribution of HII regions and GMCs can fit the models well, although the results do not change significantly compared to the parameters with the standard $R_0$ and $Theta_0$.
We present a multi-frequency study of the intermediate spiral SAB(r)bc type galaxy NGC 6744, using available data from the Chandra X-Ray telescope, radio continuum data from the Australia Telescope Compact Array and Murchison Widefield Array, and Wid e-field Infrared Survey Explorer infrared observations. We identify 117 X-ray sources and 280 radio sources. Of these, we find nine sources in common between the X-ray and radio catalogues, one of which is a faint central black hole with a bolometric radio luminosity similar to the Milky Ways central black hole. We classify 5 objects as supernova remnant candidates, 2 objects as likely supernova remnants, 17 as HII regions, 1 source as an AGN; the remaining 255 radio sources are categorised as background objects and one X-ray source is classified as a foreground star. We find the star-formation rate (SFR) of NGC 6744 to be in the range 2.8 - 4.7 $rm{M_{odot}~yr^{-1}}$ signifying the galaxy is still actively forming stars. The specific SFR of NGC 6744 is greater than that of late-type spirals such as the Milky Way, but considerably less that that of a typical starburst galaxy.
We simulate the tidal disruption of a collisionless N-body globular star cluster in a total of 300 different orbits selected to have galactocentric radii between 10 and 30 kpc in four dark matter halos: (a) a spherical halo with no subhalos, (b) a sp herical halo with subhalos, (c) a realistic halo with no subhalos, and (d) a realistic halo with subhalos. This allows us to isolate and study how the halos (lack of) dynamical symmetry and substructures affect the dispersal of tidal debris. The realistic halos are constructed from the snapshot of the Via Lactea II simulation at redshift zero. We find that the overall halos lack of dynamical symmetry disperses tidal debris to make the streams fluffier, consistent with previous studies of tidal debris of dwarf galaxies in larger orbits than ours in this study. On the other hand, subhalos in realistic potentials can locally enhance the densities along streams, making streams denser than their counterparts in smooth potentials. We show that many long and thin streams can survive in a realistic and lumpy halo for a Hubble time. This suggests that upcoming stellar surveys will likely uncover more thin streams which may contain density gaps that have been shown to be promising probes for dark matter substructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا