ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersal of tidal debris in a Milky-Way-sized dark matter halo

114   0   0.0 ( 0 )
 نشر من قبل Wai-Hin Wayne Ngan
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We simulate the tidal disruption of a collisionless N-body globular star cluster in a total of 300 different orbits selected to have galactocentric radii between 10 and 30 kpc in four dark matter halos: (a) a spherical halo with no subhalos, (b) a spherical halo with subhalos, (c) a realistic halo with no subhalos, and (d) a realistic halo with subhalos. This allows us to isolate and study how the halos (lack of) dynamical symmetry and substructures affect the dispersal of tidal debris. The realistic halos are constructed from the snapshot of the Via Lactea II simulation at redshift zero. We find that the overall halos lack of dynamical symmetry disperses tidal debris to make the streams fluffier, consistent with previous studies of tidal debris of dwarf galaxies in larger orbits than ours in this study. On the other hand, subhalos in realistic potentials can locally enhance the densities along streams, making streams denser than their counterparts in smooth potentials. We show that many long and thin streams can survive in a realistic and lumpy halo for a Hubble time. This suggests that upcoming stellar surveys will likely uncover more thin streams which may contain density gaps that have been shown to be promising probes for dark matter substructures.



قيم البحث

اقرأ أيضاً

We show that subhalos falling into the Milky Way create a flow of tidally-stripped debris particles near the galactic center with characteristic velocity behavior. In the Via Lactea-II N-body simulation, this unvirialized component constitutes a few percent of the local density and has velocities peaked at 340 km/s in the solar neighborhood. Such velocity substructure has important implications for surveys of low-metallicity stars, as well as direct detection experiments sensitive to dark matter with large scattering thresholds.
112 - Shi Shao 2020
We analyse systems analogous to the Milky Way (MW) in the EAGLE cosmological hydrodynamics simulation in order to deduce the likely structure of the MWs dark matter halo. We identify MW-mass haloes in the simulation whose satellite galaxies have simi lar kinematics and spatial distribution to those of the bright satellites of the MW, specifically systems in which the majority of the satellites (8 out of 11) have nearly co-planar orbits that are also perpendicular to the central stellar disc. We find that the normal to the common orbital plane of the co-planar satellites is well aligned with the minor axis of the host dark matter halo, with a median misalignment angle of only $17.3^circ$. Based on this result, we infer that the minor axis of the Galactic dark matter halo points towards $(l,b)=(182^circ,-2^circ)$, with an angular uncertainty at the 68 and 95 percentile confidence levels of 22$^circ$ and 43$^circ$ respectively. Thus, the inferred minor axis of the MW halo lies in the plane of the stellar disc. The halo, however, is not homologous and its flattening and orientation vary with radius. The inner parts of the halo are rounder than the outer parts and well-aligned with the stellar disc (that is the minor axis of the halo is perpendicular to the disc). Further out, the halo twists and the minor axis changes direction by $90^circ$. This twist occurs over a very narrow radial range and reflects variations in the filamentary network along which mass was accreted into the MW.
188 - Wenting Wang 2015
The mass of the dark matter halo of the Milky Way can be estimated by fitting analytical models to the phase-space distribution of dynamical tracers. We test this approach using realistic mock stellar halos constructed from the Aquarius N-body simula tions of dark matter halos in the $Lambda$CDM cosmology. We extend the standard treatment to include a Navarro-Frenk-White (NFW) potential and use a maximum likelihood method to recover the parameters describing the simulated halos from the positions and velocities of their mock halo stars. We find that the estimate of halo mass is highly correlated with the estimate of halo concentration. The best-fit halo masses within the virial radius, $R_{200}$, are biased, ranging from a 40% underestimate to a 5% overestimate in the best case (when the tangential velocities of the tracers are included). There are several sources of bias. Deviations from dynamical equilibrium can potentially cause significant bias; deviations from spherical symmetry are relatively less important. Fits to stars at different galactocentric radii can give different mass estimates. By contrast, the model gives good constraints on the mass within the half-mass radius of tracers even when restricted to tracers within 60kpc. The recovered velocity anisotropies of tracers, $beta$, are biased systematically, but this does not affect other parameters if tangential velocity data are used as constraints.
We simulate tidal streams in the presence and absence of substructures inside the zero redshift snapshot of the Via Lactea II (VL-2) simulation. A halo finder is used to remove and isolate the subhalos found inside the high resolution dark matter hal o of VL-2, and the potentials for both the main halo and all the subhalos are constructed individually using the self-consistent field (SCF) method. This allows us to make direct comparison of tidal streams between a smooth halo and a lumpy halo without assuming idealized profiles or triaxial fits. We simulate the kinematics of a star cluster starting with the same orbital position but two different velocities. Although these two orbits are only moderately eccentric and have similar apo- and pericentric distances, we find that the two streams have very different morphologies. We conclude that our model of the potential of VL-2 can provide insights about tidal streams that have not been explored by previous studies using idealized or axisymmetric models.
213 - M. Kuhlen 2009
The unambiguous detection of Galactic dark matter annihilation would unravel one of the most outstanding puzzles in particle physics and cosmology. Recent observations have motivated models in which the annihilation rate is boosted by the Sommerfeld effect, a non-perturbative enhancement arising from a long range attractive force. Here we apply the Sommerfeld correction to Via Lactea II, a high resolution N-body simulation of a Milky-Way-size galaxy, to investigate the phase-space structure of the Galactic halo. We show that the annihilation luminosity from kinematically cold substructure can be enhanced by orders of magnitude relative to previous calculations, leading to the prediction of gamma-ray fluxes from up to hundreds of dark clumps that should be detectable by the Fermi satellite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا