ﻻ يوجد ملخص باللغة العربية
We report on a general principle using the interlayer exchange coupling to extend the regime of chiral magnetic films in which stable or metastable magnetic skyrmions can appear at zero magnetic field. We verify this concept on the basis of a first-principles model for a Mn monolayer on W(001) substrate, a prototype chiral magnet for which the atomic-scale magnetic texture is determined by the frustration of exchange interactions, impossible to unwind by laboratory magnetic fields. By means of textit{ab initio} calculations for the Mn/W$_m$/Co$_n$/Pt/W(001) multilayer system we show that for certain thicknesses $m$ of the W spacer and $n$ of the Co reference layer, the effective field of the reference layer fully substitutes the required magnetic field for skyrmion formation.
Noncollinear spin textures in ferromagnetic ultrathin films are currently the subject of renewed interest since the discovery of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This antisymmetric exchange interaction selects a given chiralit
The exchange coupling underlies ferroic magnetic coupling and is thus the key element that governs statics and dynamics of magnetic systems. This fundamental interaction comes in two flavors - symmetric and antisymmetric coupling. While symmetric cou
For epitaxial trilayers of the magnetic rare-earth metals Gd and Tb, exchange coupled through a non-magnetic Y spacer layer, element-specific hysteresis loops were recorded by the x-ray magneto-optical Kerr effect at the rare-earth $M_5$ thresholds.
In this work, we use the liquid ammonia method to successfully intercalate potassium atoms into ZrTe5 single crystal, and find a transition from semimetal to semiconductor at low temperature in the intercalated ZrTe5. The resistance anomalous peak is
Changing the interlayer exchange coupling between magnetic layers in-situ is a key issue of spintronics, as it allows for the optimization of properties that are desirable for applications, including magnetic sensing and memory. In this paper, we uti