ﻻ يوجد ملخص باللغة العربية
Asynchronous polars (APs) are accreting white dwarfs (WDs) that have different WD and orbital angular velocities, unlike the rest of the known polars, which rotate synchronously (i.e., their WD and orbital angular velocities are the same). Past nova eruptions are the predicted cause of the asynchronicity, in part due to the fact that one of the APs, V1500 Cyg, was observed to undergo a nova eruption in 1975. We used the Southern African Large Telescope 10m class telescope and the MDM 2.4m Hiltner telescope to search for nova shells around three of the remaining four APs (V1432 Aql, BY Cam, and CD Ind) as well as one Intermediate Polar with a high asynchronicity (EX Hya). We found no evidence of nova shells in any of our images. We therefore cannot say that any of the systems besides V1500 Cyg had nova eruptions, but because not all post-nova systems have detectable shells, we also cannot exclude the possibility of a nova eruption occurring in any of these systems and knocking the rotation out of sync.
The subclass of magnetic Cataclysmic Variables (CV), known as asynchronous polars, are still relatively poorly understood. An asynchronous polar is a polar in which the spin period of the white dwarf is either shorter or longer than the binary orbita
The disc instability model (DIM) has been very successful in explaining the dwarf nova outbursts observed in cataclysmic variables. When, as in intermediate polars (IP), the accreting white dwarf is magnetized, the disc is truncated at the magnetosph
We improved the discless accretion models of Wynn & King, considering the effects of the changing aspect due to the white dwarf spin and the variable feeding intensity caused by the asynchronism, and set up a more general spot model which is not sens
We examine the recent star formation associated with four supergiant shells (SGSs) in the Large Magellanic Cloud (LMC): LMC 1, 4, 5, and 6, which have been shown to have simple expanding-shell structures. H II regions and OB associations are used to
The origin of the arc-shaped Sh2-296 nebula is still unclear. Mainly due to its morphology, the nebula has been suggested to be a 0.5 Myr-old supernova remnant (SNR) that could be inducing star formation in the CMa OB1 association. We aim to show, fo