ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling the hidden nematicity and spin subsystem in FeSe

88   0   0.0 ( 0 )
 نشر من قبل Jiunn-Yuan Lin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nematic order (nematicity) is considered one of the essential ingredients to understand the mechanism of Fe-based superconductivity. In most Fe-based superconductors (pnictides), nematic order is reasonably close to the antiferromagnetic order. In FeSe, in contrast, a nematic order emerges below the structure phase transition at T_s = 90 K with no magnetic order. The case of FeSe is of paramount importance to a universal picture of Fe-based superconductors. The polarized ultrafast spectroscopy provides a tool to probe simultaneously the electronic structure and the magnetic interactions through quasiparticle dynamics. Here we show that this approach reveals both the electronic and magnetic nematicity below and, surprisingly, its fluctuations far above Ts to at least 200 K. The quantitative pump-probe data clearly identify a correlation between the topology of the Fermi surface (FS) and the magnetism in all temperature regimes, thus providing profound insight into the driving factors of nematicity in FeSe and the origin of its uniqueness.



قيم البحث

اقرأ أيضاً

Elucidating the microscopic origin of nematic order in iron-based superconducting materials is important because the interactions that drive nematic order may also mediate the Cooper pairing. Nematic order breaks fourfold rotational symmetry in the i ron plane, which is believed to be driven by either orbital or spin degrees of freedom. However, as the nematic phase often develops at a temperature just above or coincides with a stripe magnetic phase transition, experimentally determining the dominant driving force of nematic order is difficult. Here, we use neutron scattering to study structurally the simplest iron-based superconductor FeSe, which displays a nematic (orthorhombic) phase transition at $T_s=90$ K, but does not order antiferromagnetically. Our data reveal substantial stripe spin fluctuations, which are coupled with orthorhombicity and are enhanced abruptly on cooling to below $T_s$. Moreover, a sharp spin resonance develops in the superconducting state, whose energy (~4 meV) is consistent with an electron boson coupling mode revealed by scanning tunneling spectroscopy, thereby suggesting a spin fluctuation-mediated sign-changing pairing symmetry. By normalizing the dynamic susceptibility into absolute units, we show that the magnetic spectral weight in FeSe is comparable to that of the iron arsenides. Our findings support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.
143 - P. Massat , D. Farina , I. Paul 2016
The spontaneous appearance of nematicity, a state of matter that breaks rotation but not translation symmetry, is one of the most intriguing property of the iron based superconductors (Fe SC), and has relevance for the cuprates as well. Establishing the critical electronic modes behind nematicity remains however a challenge, because their associated susceptibilities are not easily accessible by conventional probes. Here using FeSe as a model system, and symmetry resolved electronic Raman scattering as a probe, we unravel the presence of critical charge nematic fluctuations near the structural / nematic transition temperature, T$_Ssim$ 90 K. The diverging behavior of the associated nematic susceptibility foretells the presence of a Pomeranchuk instability of the Fermi surface with d-wave symmetry. The excellent scaling between the observed nematic susceptibility and elastic modulus data demonstrates that the structural distortion is driven by this d-wave Pomeranchuk transition. Our results make a strong case for charge induced nematicity in FeSe.
A very fundamental and unconventional characteristic of superconductivity in iron-based materials is that it occurs in the vicinity of {it two} other instabilities. Apart from a tendency towards magnetic order, these Fe-based systems have a propensit y for nematic ordering: a lowering of the rotational symmetry while time-reversal invariance is preserved. Setting the stage for superconductivity, it is heavily debated whether the nematic symmetry breaking is driven by lattice, orbital or spin degrees of freedom. Here we report a very clear splitting of NMR resonance lines in FeSe at $T_{nem}$ = 91K, far above superconducting $T_c$ of 9.3 K. The splitting occurs for magnetic fields perpendicular to the Fe-planes and has the temperature dependence of a Landau-type order-parameter. Spin-lattice relaxation rates are not affected at $T_{nem}$, which unequivocally establishes orbital degrees of freedom as driving the nematic order. We demonstrate that superconductivity competes with the emerging nematicity.
Magnetism induced by external pressure ($p$) was studied in a FeSe crystal sample by means of muon-spin rotation. The magnetic transition changes from second-order to first-order for pressures exceeding the critical value $p_{{rm c}}simeq2.4-2.5$ GPa . The magnetic ordering temperature ($T_{{rm N}}$) and the value of the magnetic moment per Fe site ($m_{{rm Fe}}$) increase continuously with increasing pressure, reaching $T_{{rm N}}simeq50$~K and $m_{{rm Fe}}simeq0.25$ $mu_{{rm B}}$ at $psimeq2.6$ GPa, respectively. No pronounced features at both $T_{{rm N}}(p)$ and $m_{{rm Fe}}(p)$ are detected at $psimeq p_{{rm c}}$, thus suggesting that the stripe-type magnetic order in FeSe remains unchanged above and below the critical pressure $p_{{rm c}}$. A phenomenological model for the $(p,T)$ phase diagram of FeSe reveals that these observations are consistent with a scenario where the nematic transitions of FeSe at low and high pressures are driven by different mechanisms.
The origin of spontaneous electronic nematic ordering provides important information for understanding iron-based superconductors. Here, we analyze a scenario where the $d_{xy}$ orbital strongly contributes to nematic ordering in FeSe. We show that t he addition of $d_{xy}$ nematicity to a pure $d_{xz}/d_{yz}$ order provides a natural explanation for the unusual Fermi surface and correctly reproduces the strongly anisotropic momentum dependence of the superconducting gap. We predict a Lifshitz transition of an electron pocket mediated by temperature and sulphur doping, whose signatures we discuss by analysing available experimental data. We present the variation of momentum dependence of the superconducting gap upon suppression of nematicity. Our quantitatively accurate model yields the transition from tetragonal to nematic FeSe and the FeSe$_{1-x}$S$_{x}$ series, and puts strong constraints on possible nematic mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا