ﻻ يوجد ملخص باللغة العربية
The spontaneous appearance of nematicity, a state of matter that breaks rotation but not translation symmetry, is one of the most intriguing property of the iron based superconductors (Fe SC), and has relevance for the cuprates as well. Establishing the critical electronic modes behind nematicity remains however a challenge, because their associated susceptibilities are not easily accessible by conventional probes. Here using FeSe as a model system, and symmetry resolved electronic Raman scattering as a probe, we unravel the presence of critical charge nematic fluctuations near the structural / nematic transition temperature, T$_Ssim$ 90 K. The diverging behavior of the associated nematic susceptibility foretells the presence of a Pomeranchuk instability of the Fermi surface with d-wave symmetry. The excellent scaling between the observed nematic susceptibility and elastic modulus data demonstrates that the structural distortion is driven by this d-wave Pomeranchuk transition. Our results make a strong case for charge induced nematicity in FeSe.
A very fundamental and unconventional characteristic of superconductivity in iron-based materials is that it occurs in the vicinity of {it two} other instabilities. Apart from a tendency towards magnetic order, these Fe-based systems have a propensit
We have performed high-resolution angle-resolved photoemission spectroscopy on FeSe superconductor (Tc ~ 8 K), which exhibits a tetragonal-to-orthorhombic structural transition at Ts ~ 90 K. At low temperature we found splitting of the energy bands a
We systematically studied in-plane optical conductivity of FeSe$_{1-x}$Te$_{x}$ thin films fabricated on CaF$_{2}$ substrates for $x$ = 0, 0.1, 0.2, and 0.4. This system shows a large enhancement of superconducting transition temperature $T_{mathrm{c
The nematic order (nematicity) is considered one of the essential ingredients to understand the mechanism of Fe-based superconductivity. In most Fe-based superconductors (pnictides), nematic order is reasonably close to the antiferromagnetic order. I
Magnetism induced by external pressure ($p$) was studied in a FeSe crystal sample by means of muon-spin rotation. The magnetic transition changes from second-order to first-order for pressures exceeding the critical value $p_{{rm c}}simeq2.4-2.5$ GPa