ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially self-organized resilient networks by a distributed cooperative mechanism

115   0   0.0 ( 0 )
 نشر من قبل Yukio Hayashi
 تاريخ النشر 2016
والبحث باللغة English
 تأليف Yukio Hayashi




اسأل ChatGPT حول البحث

The robustness of connectivity and the efficiency of paths are incompatible in many real networks. We propose a self-organization mechanism for incrementally generating onion-like networks with positive degree-degree correlations whose robustness is nearly optimal. As a spatial extension of the generation model based on cooperative copying and adding shortcut, we show that the growing networks become more robust and efficient through enhancing the onion-like topological structure on a space. The reasonable constraint for locating nodes on the perimeter in typical surface growth as a self-propagation does not affect these properties of the tolerance and the path length. Moreover, the robustness can be recovered in the random growth damaged by insistent sequential attacks even without any remedial measures.



قيم البحث

اقرأ أيضاً

121 - Yukio Hayashi 2014
A self-organization of efficient and robust networks is important for a future design of communication or transportation systems, however both characteristics are incompatible in many real networks. Recently, it has been found that the robustness of onion-like structure with positive degree-degree correlations is optimal against intentional attacks. We show that, by biologically inspired copying, an onion-like network emerges in the incremental growth with functions of proxy access and reinforced connectivity on a space. The proposed network consists of the backbone of tree-like structure by copyings and the periphery by adding shortcut links between low degree nodes to enhance the connectivity. It has the fine properties of the statistically self-averaging unlike the conventional duplication-divergence model, exponential-like degree distribution without overloaded hubs, strong robustness against both malicious attacks and random failures, and the efficiency with short paths counted by the number of hops as mediators and by the Euclidean distances. The adaptivity to heal over and to recover the performance of networking is also discussed for a change of environment in such disasters or battlefields on a geographical map. These properties will be useful for a resilient and scalable infrastructure of network systems even in emergent situations or poor environments.
154 - Yukio Hayashi , Yuki Meguro 2011
One of the challenges for future infrastructures is how to design a network with high efficiency and strong connectivity at low cost. We propose self-organized geographical networks beyond the vulnerable scale-free structure found in many real system s. The networks with spatially concentrated nodes emerge through link survival and path reinforcement on routing flows in a wireless environment with a constant transmission range of a node. In particular, we show that adding some shortcuts induces both the small-world effect and a significant improvement of the robustness to the same level as in the optimal bimodal networks. Such a simple universal mechanism will open prospective ways for several applications in wide-area ad hoc networks, smart grids, and urban planning.
With increasing threats by large attacks or disasters, the time has come to reconstruct network infrastructures such as communication or transportation systems rather than to recover them as before in case of accidents, because many real networks are extremely vulnerable. Thus, we consider self-healing mechanisms by rewirings (reuse or addition of links) to be sustainable and resilient networks even against malicious attacks. In distributed local process for healing, the key strategies are the extension of candidates of linked nodes and enhancing loops by applying a message-passing algorithm inspired from statistical physics. Simulation results show that our proposed combination of ring formation and enhancing loops is particularly effective in comparison with the conventional methods, when more than half damaged links alive or are compensated from reserved ones.
We propose a bare-bones stochastic model that takes into account both the geographical distribution of people within a country and their complex network of connections. The model, which is designed to give rise to a scale-free network of social conne ctions and to visually resemble the geographical spread seen in satellite pictures of the Earth at night, gives rise to a power-law distribution for the ranking of cities by population size (but for the largest cities) and reflects the notion that highly connected individuals tend to live in highly populated areas. It also yields some interesting insights regarding Gibrats law for the rates of city growth (by population size), in partial support of the findings in a recent analysis of real data [Rozenfeld et al., Proc. Natl. Acad. Sci. U.S.A. 105, 18702 (2008)]. The model produces a nontrivial relation between city population and city population density and a superlinear relationship between social connectivity and city population, both of which seem quite in line with real data.
We propose a dynamical model in which a network structure evolves in a self-organized critical (SOC) manner and explain a possible origin of the emergence of fractal and small-world networks. Our model combines a network growth and its decay by failu res of nodes. The decay mechanism reflects the instability of large functional networks against cascading overload failures. It is demonstrated that the dynamical system surely exhibits SOC characteristics, such as power-law forms of the avalanche size distribution, the cluster size distribution, and the distribution of the time interval between intermittent avalanches. During the network evolution, fractal networks are spontaneously generated when networks experience critical cascades of failures that lead to a percolation transition. In contrast, networks far from criticality have small-world structures. We also observe the crossover behavior from fractal to small-world structure in the network evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا