ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct frequency comb laser cooling and trapping

78   0   0.0 ( 0 )
 نشر من قبل Andrew Jayich
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Continuous wave (CW) lasers are the enabling technology for producing ultracold atoms and molecules through laser cooling and trapping. The resulting pristine samples of slow moving particles are the de facto starting point for both fundamental and applied science when a highly-controlled quantum system is required. Laser cooled atoms have recently led to major advances in quantum information, the search to understand dark energy, quantum chemistry, and quantum sensors. However, CW laser technology currently limits laser cooling and trapping to special types of elements that do not include highly abundant and chemically relevant atoms such as hydrogen, carbon, oxygen, and nitrogen. Here, we demonstrate that Doppler cooling and trapping by optical frequency combs may provide a route to trapped, ultracold atoms whose spectra are not amenable to CW lasers. We laser cool a gas of atoms by driving a two-photon transition with an optical frequency comb, an efficient process to which every comb tooth coherently contributes. We extend this technique to create a magneto-optical trap (MOT), an electromagnetic beaker for accumulating the laser-cooled atoms for further study. Our results suggest that the efficient frequency conversion offered by optical frequency combs could provide a key ingredient for producing trapped, ultracold samples of natures most abundant building blocks, as well as antihydrogen. As such, the techniques demonstrated here may enable advances in fields as disparate as molecular biology and the search for physics beyond the standard model.

قيم البحث

اقرأ أيضاً

Ultracold CH radicals promise a fruitful testbed for probing quantum-state controllable organic chemistry. In this work, we calculate CH vibrational branching ratios (VBRs) and rotational branching ratios (RBRs) with ground state mixing. We subsequen tly use these values to inform optical cycling proposals and consider two possible radiative cooling schemes using the $X^{2}Pi leftarrow A^{2}Delta$ and $X^{2}Pi leftarrow B^{2}Sigma^{-}$ transitions. As a first step towards laser cooled CH, we characterize the effective buffer gas cooling of this species and produce $sim5times10^{10}$ CH molecules per pulse with a rotational temperature of 2(1) K and a translational temperature of 7(2) K. We also determine the CH-helium collisional cross section to be $2.4(8)times10^{-14}$ cm$^{2}$. This value is crucial to correctly account for collisional broadening and accurately extract the in-cell CH density. These cold CH molecules mark an ideal starting point for future laser cooling and trapping experiments and tests of cold organic chemistry.
Direct frequency comb spectroscopy of trapped ions is demonstated for the first time. It is shown that the 4s^2S_(1/2)-4p^2P_(3/2) transition in calcium ions can be excited directly with a frequency comb laser that is upconverted to 393 nm. Detection of the transition is performed using a shelving scheme to suppress background signal from non-resonant comb modes. The measured transition frequency of f=761 905 012.7(0.5) MHz presents an improvement in accuracy of more than two orders of magnitude.
We investigate cooling mechanisms in magneto-optically and magnetically trapped erbium. We find efficient sub-Doppler cooling in our trap, which can persist even in large magnetic fields due to the near degeneracy of two Lande g factors. Furthermore, a continuously loaded magnetic trap is demonstrated where we observe temperatures below 25 microkelvin. These favorable cooling and trapping properties suggest a number of scientific possibilities for rare-earth atomic physics, including narrow linewidth laser cooling and spectroscopy, unique collision studies, and degenerate bosonic and fermionic gases with long-range magnetic dipole coupling.
We explore the possibility of decelerating and Doppler cooling of an ensemble of two-level atoms by a coherent train of short, non-overlapping laser pulses. We develop a simple analytical model for dynamics of a two-level system driven by the resulti ng frequency comb field. We find that the effective scattering force mimics the underlying frequency comb structure. The force pattern depends strongly on the ratio of the atomic lifetime to the repetition time and pulse area. For example, in the limit of short lifetimes, the frequency peaks of the optical force wash out. We show that laser cooling with pulse trains results in a velocity comb, a series of narrow peaks in the velocity space.
89 - Guillaume Stern 2010
We demonstrate a compact laser source suitable for the trapping and cooling of potassium. By frequency doubling a fiber laser diode at 1534 nm in a waveguide, we produce 767 nm laser light. A current modulation of the diode allows to generate the two required frequencies for cooling in a simple and robust apparatus. We successfully used this laser source to trap ^39 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا