ترغب بنشر مسار تعليمي؟ اضغط هنا

Resnet in Resnet: Generalizing Residual Architectures

154   0   0.0 ( 0 )
 نشر من قبل Diogo Almeida
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Residual networks (ResNets) have recently achieved state-of-the-art on challenging computer vision tasks. We introduce Resnet in Resnet (RiR): a deep dual-stream architecture that generalizes ResNets and standard CNNs and is easily implemented with no computational overhead. RiR consistently improves performance over ResNets, outperforms architectures with similar amounts of augmentation on CIFAR-10, and establishes a new state-of-the-art on CIFAR-100.

قيم البحث

اقرأ أيضاً

Deep ResNet architectures have achieved state of the art performance on many tasks. While they solve the problem of gradient vanishing, they might suffer from gradient exploding as the depth becomes large (Yang et al. 2017). Moreover, recent results have shown that ResNet might lose expressivity as the depth goes to infinity (Yang et al. 2017, Hayou et al. 2019). To resolve these issues, we introduce a new class of ResNet architectures, called Stable ResNet, that have the property of stabilizing the gradient while ensuring expressivity in the infinite depth limit.
The information bottleneck principle (Shwartz-Ziv & Tishby, 2017) suggests that SGD-based training of deep neural networks results in optimally compressed hidden layers, from an information theoretic perspective. However, this claim was established o n toy data. The goal of the work we present here is to test whether the information bottleneck principle is applicable to a realistic setting using a larger and deeper convolutional architecture, a ResNet model. We trained PixelCNN++ models as inverse representation decoders to measure the mutual information between hidden layers of a ResNet and input image data, when trained for (1) classification and (2) autoencoding. We find that two stages of learning happen for both training regimes, and that compression does occur, even for an autoencoder. Sampling images by conditioning on hidden layers activations offers an intuitive visualisation to understand what a ResNets learns to forget.
How can neural networks such as ResNet efficiently learn CIFAR-10 with test accuracy more than 96%, while other methods, especially kernel methods, fall relatively behind? Can we more provide theoretical justifications for this gap? Recently, there is an influential line of work relating neural networks to kernels in the over-parameterized regime, proving they can learn certain concept class that is also learnable by kernels with similar test error. Yet, can neural networks provably learn some concept class BETTER than kernels? We answer this positively in the distribution-free setting. We prove neural networks can efficiently learn a notable class of functions, including those defined by three-layer residual networks with smooth activations, without any distributional assumption. At the same time, we prove there are simple functions in this class such that with the same number of training examples, the test error obtained by neural networks can be MUCH SMALLER than ANY kernel method, including neural tangent kernels (NTK). The main intuition is that multi-layer neural networks can implicitly perform hierarchical learning using different layers, which reduces the sample complexity comparing to one-shot learning algorithms such as kernel methods. In a follow-up work [2], this theory of hierarchical learning is further strengthened to incorporate the backward feature correction process when training deep networks. In the end, we also prove a computation complexity advantage of ResNet with respect to other learning methods including linear regression over arbitrary feature mappings.
Quantization has become a popular technique to compress neural networks and reduce compute cost, but most prior work focuses on studying quantization without changing the network size. Many real-world applications of neural networks have compute cost and memory budgets, which can be traded off with model quality by changing the number of parameters. In this work, we use ResNet as a case study to systematically investigate the effects of quantization on inference compute cost-quality tradeoff curves. Our results suggest that for each bfloat16 ResNet model, there are quantized models with lower cost and higher accuracy; in other words, the bfloat16 compute cost-quality tradeoff curve is Pareto-dominated by the 4-bit and 8-bit curves, with models primarily quantized to 4-bit yielding the best Pareto curve. Furthermore, we achieve state-of-the-art results on ImageNet for 4-bit ResNet-50 with quantization-aware training, obtaining a top-1 eval accuracy of 77.09%. We demonstrate the regularizing effect of quantization by measuring the generalization gap. The quantization method we used is optimized for practicality: It requires little tuning and is designed with hardware capabilities in mind. Our work motivates further research into optimal numeric formats for quantization, as well as the development of machine learning accelerators supporting these formats. As part of this work, we contribute a quantization library written in JAX, which is open-sourced at https://github.com/google-research/google-research/tree/master/aqt.
The Residual Network (ResNet), proposed in He et al. (2015), utilized shortcut connections to significantly reduce the difficulty of training, which resulted in great performance boosts in terms of both training and generalization error. It was emp irically observed in He et al. (2015) that stacking more layers of residual blocks with shortcut 2 results in smaller training error, while it is not true for shortcut of length 1 or 3. We provide a theoretical explanation for the uniqueness of shortcut 2. We show that with or without nonlinearities, by adding shortcuts that have depth two, the condition number of the Hessian of the loss function at the zero initial point is depth-invariant, which makes training very deep models no more difficult than shallow ones. Shortcuts of higher depth result in an extremely flat (high-order) stationary point initially, from which the optimization algorithm is hard to escape. The shortcut 1, however, is essentially equivalent to no shortcuts, which has a condition number exploding to infinity as the number of layers grows. We further argue that as the number of layers tends to infinity, it suffices to only look at the loss function at the zero initial point. Extensive experiments are provided accompanying our theoretical results. We show that initializing the network to small weights with shortcut 2 achieves significantly better results than random Gaussian (Xavier) initialization, orthogonal initialization, and shortcuts of deeper depth, from various perspectives ranging from final loss, learning dynamics and stability, to the behavior of the Hessian along the learning process.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا