ﻻ يوجد ملخص باللغة العربية
The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: i) Many well-known operator splitting methods, such as forward-backward splitting (FBS) and Douglas-Rachford splitting (DRS), actually define a fixed-point mapping; ii) The optimal solutions of the composite convex program and the solutions of a system of nonlinear equations derived from the fixed-point mapping are equivalent. Solving this kind of system of nonlinear equations enables us to develop second-order type methods. Although these nonlinear equations may be non-differentiable, they are often semi-smooth and their generalized Jacobian matrix is positive semidefinite due to monotonicity. By combining with a regularization approach and a known hyperplane projection technique, we propose an adaptive semi-smooth Newton method and establish its convergence to global optimality. Preliminary numerical results on $ell_1$-minimization problems demonstrate that our second-order type algorithms are able to achieve superlinear or quadratic convergence.
This paper is devoted to studying an inexact augmented Lagrangian method for solving a class of manifold optimization problems, which have non-smooth objective functions and non-negative constraints. Under the constant positive linear dependence cond
We describe an active-set method for the minimization of an objective function $phi$ that is the sum of a smooth convex function and an $ell_1$-regularization term. A distinctive feature of the method is the way in which active-set identification and
We introduce Newton-ADMM, a method for fast conic optimization. The basic idea is to view the residuals of consecutive iterates generated by the alternating direction method of multipliers (ADMM) as a set of fixed point equations, and then use a nons
We propose a semi-proximal augmented Lagrangian based decomposition method for convex composite quadratic conic programming problems with primal block angular structures. Using our algorithmic framework, we are able to naturally derive several well k
This paper is concerned with a class of zero-norm regularized piecewise linear-quadratic (PLQ) composite minimization problems, which covers the zero-norm regularized $ell_1$-loss minimization problem as a special case. For this class of nonconvex no