ﻻ يوجد ملخص باللغة العربية
This paper is concerned with a class of zero-norm regularized piecewise linear-quadratic (PLQ) composite minimization problems, which covers the zero-norm regularized $ell_1$-loss minimization problem as a special case. For this class of nonconvex nonsmooth problems, we show that its equivalent MPEC reformulation is partially calm on the set of global optima and make use of this property to derive a family of equivalent DC surrogates. Then, we propose a proximal majorization-minimization (MM) method, a convex relaxation approach not in the DC algorithm framework, for solving one of the DC surrogates which is a semiconvex PLQ minimization problem involving three nonsmooth terms. For this method, we establish its global convergence and linear rate of convergence, and under suitable conditions show that the limit of the generated sequence is not only a local optimum but also a good critical point in a statistical sense. Numerical experiments are conducted with synthetic and real data for the proximal MM method with the subproblems solved by a dual semismooth Newton method to confirm our theoretical findings, and numerical comparisons with a convergent indefinite-proximal ADMM for the partially smoothed DC surrogate verify its superiority in the quality of solutions and computing time.
Sparsity-inducing regularization problems are ubiquitous in machine learning applications, ranging from feature selection to model compression. In this paper, we present a novel stochastic method -- Orthant Based Proximal Stochastic Gradient Method (
We consider minimization of functions that are compositions of convex or prox-regular functions (possibly extended-valued) with smooth vector functions. A wide variety of important optimization problems fall into this framework. We describe an algori
This paper is concerned with the computation of the high-dimensional zero-norm penalized quantile regression estimator, defined as a global minimizer of the zero-norm penalized check loss function. To seek a desirable approximation to the estimator,
Optimizing with group sparsity is significant in enhancing model interpretability in machining learning applications, e.g., feature selection, compressed sensing and model compression. However, for large-scale stochastic training problems, effective
This paper proposes a homotopy coordinate descent (HCD) method to solve the $l_0$-norm regularized least square ($l_0$-LS) problem for compressed sensing, which combine the homotopy technique with a variant of coordinate descent method. Differs from