ﻻ يوجد ملخص باللغة العربية
We use local Hamiltonian torus actions to degenerate a symplectic manifold to a normal crossings symplectic variety in a smooth one-parameter family. This construction, motivated in part by the Gross-Siebert and B. Parkers programs, contains a multifold version of the usual (two-fold) symplectic cut construction and in particular splits a symplectic manifold into several symplectic manifolds containing normal crossings symplectic divisors with shared irreducible components in one step.
We show that the exterior derivative operator on a symplectic manifold has a natural decomposition into two linear differential operators, analogous to the Dolbeault operators in complex geometry. These operators map primitive forms into primitive fo
We introduce filtered cohomologies of differential forms on symplectic manifolds. They generalize and include the cohomologies discussed in Paper I and II as a subset. The filtered cohomologies are finite-dimensional and can be associated with differ
We introduce a class of Weinstein domains which are sublevel sets of flexible Weinstein manifolds but are not themselves flexible. These manifolds exhibit rather subtle behavior with respect to both holomorphic curve invariants and symplectic flexibi
We introduce a method of geometric quantization for compact $b$-symplectic manifolds in terms of the index of an Atiyah-Patodi-Singer (APS) boundary value problem. We show further that b-symplectic manifolds have canonical Spin-c structures in the us
The paper is devoted to study of Massey products in symplectic manifolds. Theory of generalized and classical Massey products and a general construction of symplectic manifolds with nontrivial Massey products of arbitrary large order are exposed. The