ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Photon Multi-Channel Interferometry for Quantum Information Processing

87   0   0.0 ( 0 )
 نشر من قبل Ish Dhand
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ish Dhand




اسأل ChatGPT حول البحث

This thesis reports advances in the theory of design, characterization and simulation of multi-photon multi-channel interferometers. I advance the design of interferometers through an algorithm to realize an arbitrary discrete unitary transformation on the combined spatial and internal degrees of freedom of light. This procedure effects an arbitrary $n_{s}n_{p}times n_{s}n_{p}$ unitary matrix on the state of light in $n_{s}$ spatial and $n_{p}$ internal modes. I devise an accurate and precise procedure for characterizing any multi-port linear optical interferometer using one- and two-photon interference. Accuracy is achieved by estimating and correcting systematic errors that arise due to spatiotemporal and polarization mode mismatch. Enhanced accuracy and precision are attained by fitting experimental coincidence data to a curve simulated using measured source spectra. The efficacy of our characterization procedure is verified by numerical simulations. I develop group-theoretic methods for the analysis and simulation of linear interferometers. I devise a graph-theoretic algorithm to construct the boson realizations of the canonical SU$(n)$ basis states, which reduce the canonical subgroup chain, for arbitrary $n$. The boson realizations are employed to construct $mathcal{D}$-functions, which are the matrix elements of arbitrary irreducible representations, of SU$(n)$ in the canonical basis. I show that immanants of principal submatrices of a unitary matrix $T$ are a sum of the diagonal $mathcal{D}(Omega)$-functions of group element $Omega$ over $t$ determined by the choice of submatrix and over the irrep $(lambda)$ determined by the immanant under consideration. The algorithm for $mathrm{SU}(n)$ $mathcal{D}$-function computation and the results connecting these functions with immanants open the possibility of group-theoretic analysis and simulation of linear optics.

قيم البحث

اقرأ أيضاً

Multi-port beamsplitters are cornerstone devices for high-dimensional quantum information tasks, which can outperform the two-dimensional ones. Nonetheless, the fabrication of such devices has been proven to be challenging with progress only recently achieved with the advent of integrated photonics. Here, we report on the production of high-quality $N times N$ (with $N=4,7$) multi-port beamsplitters based on a new scheme for manipulating multi-core optical fibers. By exploring their compatibility with optical fiber components, we create 4-dimensional quantum systems and implement the measurement-device-independent random number generation task with a programmable 4-arm interferometer operating at a 2 MHz repetition rate. Thanks to the high visibilities observed, we surpass the 1-bit limit of binary protocols and attain 1.23 bits of certified private randomness per experimental round. Our result demonstrates that fast switching, low-loss and high optical quality for high-dimensional quantum information can be simultaneously achieved with multi-core fiber technology.
We propose a new architecture for implementing electronic interferometry in quantum Hall bars. It exploits scattering among parallel edge channels. In contrast to previous developments, this one employs a simply-connected mesa admitting serial concat enation of building elements closer to optical analogues. Implementations of Mach-Zehnder and Hambury-Brown-Twiss interferometers are discussed together with new structures yet unexplored in quantum electronics.
Multi-photon interference reveals strictly non-classical phenomena. Its applications range from fundamental tests of quantum mechanics to photonic quantum information processing, where a significant fraction of key experiments achieved so far comes f rom multi-photon state manipulation. We review the progress, both theoretical and experimental, of this rapidly advancing research. The emphasis is given to the creation of photonic entanglement of various forms, tests of the completeness of quantum mechanics (in particular, violations of local realism), quantum information protocols for quantum communication (e.g., quantum teleportation, entanglement purification and quantum repeater), and quantum computation with linear optics. We shall limit the scope of our review to few photon phenomena involving measurements of discrete observables.
We propose a Heisenberg-limited quantum interferometer whose input is twin optical beams from which one or more photons have been indistinguishably subtracted. Such an interferometer can yield Heisenberg-limited performance while at the same time giv ing a direct fringe reading, unlike for the twin-beam input of the Holland-Burnett interferometer. We propose a feasible experimental realization using a photon-number correlated source, such as non-degenerate parametric down-conversion, and perform realistic analyses of performance in the presence of loss and detector inefficiency.
In spontaneous parametric down conversion (SPDC) based quantum information processing (QIP) experiments, there is a tradeoff between the coincide count rates (i.e. the pumping power of the SPDC), which limits the rate of the protocol, and the visibil ity of the quantum interference, which limits the quality of the protocol. This tradeoff is mainly caused by the multi-photon pair emissions from the SPDCs. In theory, the problem is how to model the experiments without truncating these multi-photon emissions while including practical imperfections. In this paper, we establish a method to theoretically simulate SPDC based QIPs which fully incorporates the effect of multi-photon emissions and various practical imperfections. The key ingredient in our method is the application of the characteristic function formalism which has been used in continuous variable QIPs. We apply our method to three examples, the Hong-Ou-Mandel interference and the Einstein-Podolsky-Rosen interference experiments, and the concatenated entanglement swapping protocol. For the first two examples, we show that our theoretical results quantitatively agree with the recent experimental results. Also we provide the closed expressions for these the interference visibilities with the full multi-photon components and various imperfections. For the last example, we provide the general theoretical form of the concatenated entanglement swapping protocol in our method and show the numerical results up to 5 concatenations. Our method requires only a small computation resource (few minutes by a commercially available computer) which was not possible by the previous theoretical approach. Our method will have applications in a wide range of SPDC based QIP protocols with high accuracy and a reasonable computation resource.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا