ﻻ يوجد ملخص باللغة العربية
We prove that a linear d-dimensional Schr{o}dinger equation on $mathbb{R}^d$ with harmonic potential $|x|^2$ and small t-quasiperiodic potential $ipartial_t u -- Delta u + |x|^2 u + epsilon V (tomega, x)u = 0, x in mathbb{R}^d$ reduces to an autonomous system for most values of the frequency vector $omega in mathbb{R}^n$. As a consequence any solution of such a linear PDE is almost periodic in time and remains bounded in all Sobolev norms.
We consider the one-dimensional quantum harmonic oscillator perturbed by a linear operator which is a polynomial of degree $2$ in $(x,-{rm i}partial_x)$, with coefficients quasi-periodically depending on time. By establishing the reducibility results
In this article we prove a reducibility result for the linear Schrodinger equation on a Zoll manifold with quasi-periodic in time pseudo-differential perturbation of order less or equal than $1/2$. As far as we know, this is the first reducibility re
We study the generalized eigenvalue problem on the whole space for a class of integro-differential elliptic operators. The nonlocal operator is over a finite measure, but this has no particular structure and it can even be singular. The first part of
An algebraic lower bound on the energy decay for solutions of the advection-diffusion equation in $mathbb{R}^d$ with $d=2,3$ is derived using the Fourier splitting method. Motivated by a conjecture on mixing of passive scalars in fluids, a lower boun
Consider a nonlinear Kirchhoff type equation as follows begin{equation*} left{ begin{array}{ll} -left( aint_{mathbb{R}^{N}}| abla u|^{2}dx+bright) Delta u+u=f(x)leftvert urightvert ^{p-2}u & text{ in }mathbb{R}^{N}, uin H^{1}(mathbb{R}^{N}), & end{a