ﻻ يوجد ملخص باللغة العربية
Using a successful framework for describing S-wave hadronic decays of light hyperons induced by a subprocess $s to u (bar u d)$, we presented recently a model-independent calculation of the amplitude and branching ratio for $Xi^-_b to Lambda_b pi^-$ in agreement with a LHCb measurement. The same quark process contributes to $Xi^0_c to Lambda_c pi^-$, while a second term from the subprocess $cs to cd$ has been related by Voloshin to differences among total decay rates of charmed baryons. We calculate this term and find it to have a magnitude approximately equal to the $s to u (bar u d)$ term. We argue for a negligible relative phase between these two contributions, potentially due to final state interactions. However, we do not know whether they interfere destructively or constructively. For constructive interference one predicts ${cal B}(Xi_c^0 to Lambda_c pi^-) = (1.94 pm 0.70)times 10^{-3}$ and ${cal B}(Xi_c^+ to Lambda_c pi^0) = (3.86 pm 1.35)times 10^{-3}$. For destructive interference, the respective branching fractions are expected to be less than about $10^{-4}$ and $2 times 10^{-4}$.
From the perspective that the $Lambda_c(2595)$ and $Lambda_c(2625)$ are dynamically generated resonances from the $DN,~D^*N$ interaction and coupled channels, we have evaluated the rates for $Lambda_b to pi^- Lambda_c(2595)$ and $Lambda_b to pi^- Lam
The decay $Lambda_b^0 to Lambda_c^+ p overline{p} pi^-$ is observed using $pp$ collision data collected with the LHCb detector at centre-of-mass energies of $sqrt{s}=$ 7 and 8 TeV, corresponding to an integrated luminosity of 3 $fb^{-1}$. The ratio o
The decay $Xi^-_b to pi^- Lambda_b$ has recently been observed by the LHCb Collaboration at CERN. In contrast to most weak decays of $b$-flavored baryons, this process involves the decay of the strange quark in $Xi_b$, and thus has features in common
We present the first lattice-QCD calculation of the form factors governing the charm-baryon semileptonic decays $Lambda_c to Lambda^*(1520)ell^+ u_ell$. As in our previous calculation of the $Lambda_b to Lambda^*(1520)$ form factors, we work in the $
We analyze the most recent data for the pion vector form factor in the timelike region, employing a model-independent approach based on dispersion theory. We confirm earlier observations about the inconsistency of different modern high-precision data