ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of the decay $Lambda_b^0 to Lambda_c^+ p overline{p} pi^-$

95   0   0.0 ( 0 )
 نشر من قبل Mengzhen Wang
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The decay $Lambda_b^0 to Lambda_c^+ p overline{p} pi^-$ is observed using $pp$ collision data collected with the LHCb detector at centre-of-mass energies of $sqrt{s}=$ 7 and 8 TeV, corresponding to an integrated luminosity of 3 $fb^{-1}$. The ratio of branching fractions between $Lambda_b^0 to Lambda_c^+ p overline{p} pi^-$ and $Lambda_b^0 to Lambda_c^+ pi^-$ decays is measured to be begin{equation*} frac{mathcal{B}(Lambda_b^0 to Lambda_c^+ p overline{p}pi^-)}{mathcal{B}(Lambda_b^0 to Lambda_c^+ pi^-)} = 0.0540 pm 0.0023 pm 0.0032. end{equation*} Two resonant structures are observed in the $ Lambda_c^+ pi^-$ mass spectrum of the ${Lambda_b^0 to Lambda_c^+ poverline{p} pi^-}$ decays, corresponding to the $Sigma_c(2455)^0$ and $Sigma_c^{*}(2520)^0$ states. The ratios of branching fractions with respect to the decay $Lambda_b^0 to Lambda_c^+ p overline{p} pi^-$ are begin{align*} frac{mathcal{B}(Lambda_b^0 to Sigma_c^0 poverline{p})timesmathcal{B}(Sigma_c^0to Lambda_c^+ pi^-)}{mathcal{B}(Lambda_b^0 to Lambda_c^+ p overline{p}pi^-)} = 0.089pm0.015pm0.006, frac{mathcal{B}(Lambda_b^0 to Sigma_c^{*0} poverline{p})timesmathcal{B}(Sigma_c^{*0}to Lambda_c^+ pi^-)}{mathcal{B}(Lambda_b^0 to Lambda_c^+ p overline{p}pi^-)} = 0.119pm0.020pm0.014. end{align*} In all of the above results, the first uncertainty is statistical and the second is systematic. The phase space is also examined for the presence of dibaryon resonances. No evidence for such resonances is found.



قيم البحث

اقرأ أيضاً

A search for $C!P$ violation in the $Lambda_b^0 to p pi^- pi^+ pi^-$ decay is performed using LHCb data corresponding to an integrated luminosity of 6.6$,fb^{-1}$ collected in $pp$ collisions at centre-of-mass energies of 7, 8 and 13$,Tekern -0.1em V $. The analysis uses both triple product asymmetries and the unbinned energy test method. The highest significances of $C!P$ asymmetry are 2.9 standard deviations from triple product asymmetries and 3.0 standard deviations for the energy test method. Once the global $p$-value is considered, all results are consistent with no $C!P$ violation. Parity violation is observed at a significance of $5.5$ standard deviations for the triple product asymmetry method and $5.3$ standard deviations for the energy test method.
We have searched for the Cabibbo-suppressed decay $Lambda_c^+tophi ppi^0$ in $e^+e^-$ collisions using a data sample corresponding to an integrated luminosity of 915 $rm fb^{-1}$. The data were collected by the Belle experiment at the KEKB $e^+e^-$ a symmetric-energy collider running at or near the $Upsilon(4S)$ and $Upsilon(5S)$ resonances. No significant signal is observed, and we set an upper limit on the branching fraction of $mathcal{B}(Lambda_c^+to phi ppi^0) <15.3times10^{-5}$ at 90% confidence level. The contribution for nonresonant $Lambda_c^+to K^+K^- ppi^0$ decays is found to be consistent with zero and the corresponding upper limit on its branching fraction is set to be $mathcal{B}(Lambda_c^+to K^+K^-ppi^0)_{rm NR} <6.3times10^{-5} $ at 90% confidence level. We also measure the branching fraction for the Cabibbo-favored decay $Lambda_c^+to K^-pi^+ppi^0$; the result is $mathcal{B}(Lambda_c^+to K^-pi^+ppi^0)= (4.42pm0.05, (rm stat.) pm 0.12, (rm syst.) pm 0.16, (mathcal{B}_{rm Norm}))%$, which is the most precise measurement to date. Finally, we have searched for an intermediate hidden-strangeness pentaquark decay $P^+_stophi p$. We see no evidence for this intermediate decay and set an upper limit on the product branching fraction of ${cal B}(Lambda_c^+to P^+_s pi^0)times {cal B}(P^+_stophi p) <8.3times 10^{-5}$ at 90% confidence level.
The first observation of the Cabibbo-suppressed decay $Lambda_b^0rightarrow J/psi p pi^-$ is reported using a data sample of proton-proton collisions at 7 and 8 TeV, corresponding to an integrated luminosity of 3 $rm fb^{-1}$. A prominent signal is o bserved and the branching fraction relative to the decay mode $Lambda_b^0rightarrow J/psi p K^-$ is determined to be $$ frac{{cal B}(Lambda_b^0rightarrow J/psi p pi^-)}{{cal B}(Lambda_b^0rightarrow J/psi p K^-)}=0.0824pm0.0025:(text{stat})pm0.0042:(text{syst}). $$ A search for direct CP violation is performed. The difference in the CP asymmetries between these two decays is found to be $$ {cal A}_{CP}(Lambda_b^0rightarrow J/psi p pi^-)-{cal A}_{CP}(Lambda_b^0rightarrow J/psi p K^-)=(+5.7pm 2.4:(text{stat})pm1.2:(text{syst}))%, $$ which is compatible with CP symmetry at the $2.2sigma$ level.
The decay $Lambda_b^0 to eta_c(1S) p K^-$ is observed for the first time using a data sample of proton-proton collisions, corresponding to an integrated luminosity of 5.5 $fb^{-1}$, collected with the LHCb experiment at a center-of-mass energy of 13 TeV. The branching fraction of the decay is measured, using the $Lambda_b^0 to J/psi p K^-$ decay as a normalization mode, to be $mathcal{B}(Lambda_b^0 to eta_c(1S) p K^-)=(1.06pm0.16pm0.06^{+0.22}_{-0.19})times10^{-4}$, where the quoted uncertainties are statistical, systematic and due to external inputs, respectively. A study of the $eta_c(1S) p$ mass spectrum is performed to search for the $P_c(4312)^+$ pentaquark state. No evidence is observed and an upper limit of begin{equation*} frac{mathcal{B}(Lambda_b^0 to P_c(4312)^+ K^-)times mathcal{B}(P_c(4312)^+ to eta_c(1S) p)}{mathcal{B}(Lambda_b^0 to eta_c(1S) p K^-)} < 0.24 end{equation*} is obtained at the 95% confidence level.
The first observation of the decays $Lambda_b^0 to chi_{c1} p K^-$ and $Lambda_b^0 to chi_{c2} p K^-$ is reported using a data sample corresponding to an integrated luminosity of $3.0$ fb$^{-1}$, collected by the LHCb experiment in $pp$ collisions at centre-of-mass energies of 7 and 8 TeV. The following ratios of branching fractions are measured begin{eqnarray*} frac{{cal B}(Lambda_b^0 to chi_{c1} p K^-)}{{cal B}(Lambda_b^0 to J/psi p K^-)} = 0.242 pm 0.014 pm 0.013 pm 0.009, frac{{cal B}(Lambda_b^0 to chi_{c2} p K^-)}{{cal B}(Lambda_b^0 to J/psi p K^-)} = 0.248 pm 0.020 pm 0.014 pm 0.009, frac{{cal B}(Lambda_b^0 to chi_{c2} p K^-)}{{cal B}(Lambda_b^0 to chi_{c1} p K^-)} = 1.02 pm 0.10 pm 0.02 pm 0.05, end{eqnarray*} where the first uncertainty is statistical, the second systematic and the third due to the uncertainty on the branching fractions of the $chi_{c1}to J/psigamma$ and $chi_{c2} to J/psigamma$ decays. Using both decay modes, the mass of the $Lambda_b^0$ baryon is also measured to be $m_{Lambda_b^0} = 5619.44 pm 0.28 pm 0.26$ MeV/$c^2$, where the first and second uncertainties are statistical and systematic, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا