ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Wavelength Observations of the Blazar 1ES 1011+496 in Spring 2008

69   0   0.0 ( 0 )
 نشر من قبل Elina Lindfors
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The BL Lac object 1ES 1011+496 was discovered at Very High Energy gamma-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Metsahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability. The differential VHE spectrum could be described with a power-law function. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder when brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE gamma-ray bands could be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike concluded in previous work based on nonsimultaneous data, and is well described by a standard one zone synchrotron self Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.



قيم البحث

اقرأ أيضاً

1ES 1011+496 $(z=0.212)$ was discovered in very high energy (VHE, E >100 GeV) $gamma$-rays with MAGIC in 2007. The absence of simultaneous data at lower energies led to a rather incomplete characterization of the broadband spectral energy distributio n (SED). We study the source properties and the emission mechanisms, probing whether a simple one-zone synchrotron-self-Compton (SSC) scenario is able to explain the observed broadband spectrum. We analyzed VHE to radio data from 2011 and 2012 collected by MAGIC, $Fermi$-LAT, $Swift$, KVA, OVRO, and Metsahovi in addition to optical polarimetry data and radio maps from the Liverpool Telescope and MOJAVE. The VHE spectrum was fit with a simple power law with a photon index of $3.69pm0.22$ and a flux above 150 GeV of $(1.46pm0.16)times10^{-11}$ ph cm$^{-2}$ s$^{-1}$. 1ES 1011+496 was found to be in a generally quiescent state at all observed wavelengths, showing only moderate variability from radio to X-rays. A low degree of polarization of less than 10% was measured in optical, while some bright features polarized up to 60% were observed in the radio jet. A similar trend in the rotation of the electric vector position angle was found in optical and radio. The radio maps indicated a superluminal motion of $1.8pm0.4,c$, which is the highest speed statistically significantly measured so far in a high-frequency-peaked BL Lac. For the first time, the high-energy bump in the broadband SED of 1ES 1011+496 could be fully characterized from 0.1 GeV to 1 TeV which permitted a more reliable interpretation within the one-zone SSC scenario. The polarimetry data suggest that at least part of the optical emission has its origin in some of the bright radio features, while the low polarization in optical might be due to the contribution of parts of the radio jet with different orientations of the magnetic field to the optical emission.
A detailed multi-epoch study of the broadband spectral behaviour of the very high energy (VHE) source, 1ES,1011+496, provides us with valuable information regarding the underlying particle distribution. Simultaneous observations of the source at opti cal/ UV/ X-ray/ $gamma$-ray during three different epochs, as obtained from Swift-UVOT/ Swift-XRT/ Fermi-LAT, are supplemented with the information available from the VHE telescope array, HAGAR. The longterm flux variability at the Fermi-LAT energies is clearly found to be lognormal. It is seen that the broadband spectral energy distribution (SED) of 1ES,1011+496 can be successfully reproduced by synchrotron and synchrotron self Compton emission models. Notably, the observed curvature in the photon spectrum at X-ray energies demands a smooth transition of the underlying particle distribution from a simple power law to a power law with an exponential cutoff or a smooth broken power law distribution, which may possibly arise when the escape of the particles from the main emission region is energy dependent. Specifically, if the particle escape rate is related to its energy as $E^{0.5}$ then the observed photon spectrum is consistent with the ones observed during the various epochs.
In February-March 2014, the MAGIC telescopes observed the high-frequency peaked BL Lac 1ES 1011+496 (z=0.212) in flaring state at very-high energy (VHE, E>100GeV). The flux reached a level more than 10 times higher than any previously recorded flarin g state of the source. We present the description of the characteristics of the flare presenting the light curve and the spectral parameters of the night-wise spectra and the average spectrum of the whole period. From these data we aim at detecting the imprint of the Extragalactic Background Light (EBL) in the VHE spectrum of the source, in order to constrain its intensity in the optical band. For this we implement the method developed by the H.E.S.S. collaboration in which the intrinsic energy spectrum of the source is modeled with a simple function, and the EBL-induced optical depth is calculated using a template EBL model. The likelihood of the observed spectrum is then maximized, including a normalization factor for the EBL opacity among the free parameters. From the data collected differential energy spectra was produced for all nights of the observed period. Evaluating the changes in the fit parameters we conclude that the spectral shape for most of the nights were compatible, regardless of the flux level, which enabled us to produce an average spectrum from which the EBL imprint could be constrained. The likelihood ratio test shows that the model with an EBL density 1.07(-0.20,+0.24)_{stat+sys}, relative to the one in the tested EBL template (Dominguez et al.2011), is preferred at the 4.6 sigma level to the no-EBL hypothesis, with the assumption that the intrinsic source spectrum can be modeled as a log-parabola. This would translate into a constraint of the EBL density in the wavelength range [0.24 um,4.25 um], with a peak value at 1.4 um of F=12.27_{-2.29}^{+2.75} nW m^{-2} sr^{-1}, including systematics.
The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out fro m the radio to {gamma} -ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP- WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the {gamma} -ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 Rg . We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus.
A hotspot at a position compatible with the BL Lac object 1ES 2322-409 was serendipitously detected with H.E.S.S. during observations performed in 2004 and 2006 on the blazar PKS 2316-423. Additional data on 1ES 2322-409 were taken in 2011 and 2012, leading to a total live-time of 22.3h. Point-like very-high-energy (VHE; E>100GeV) $gamma$-ray emission is detected from a source centred on the 1ES 2322-409 position, with an excess of 116.7 events at a significance of 6.0$sigma$. The average VHE $gamma$-ray spectrum is well described with a power law with a photon index $Gamma=3.40pm0.66_{text{stat}}pm0.20_{text{sys}}$ and an integral flux $Phi(E>200GeV) = (3.11pm0.71_{rm stat}pm0.62_{rm sys})times10^{-12} cm^{-2} s^{-1}$, which corresponds to 1.1$%$ of the Crab nebula flux above 200 GeV. Multi-wavelength data obtained with Fermi LAT, Swift XRT and UVOT, RXTE PCA, ATOM, and additional data from WISE, GROND and Catalina, are also used to characterise the broad-band non-thermal emission of 1ES 2322-409. The multi-wavelength behaviour indicates day-scale variability. Swift UVOT and XRT data show strong variability at longer scales. A spectral energy distribution (SED) is built from contemporaneous observations obtained around a high state identified in Swift data. A modelling of the SED is performed with a stationary homogeneous one-zone synchrotron-self-Compton (SSC) leptonic model. The redshift of the source being unknown, two plausible values were tested for the modelling. A systematic scan of the model parameters space is performed, resulting in a well-constrained combination of values providing a good description of the broad-band behaviour of 1ES 2322-409.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا