ترغب بنشر مسار تعليمي؟ اضغط هنا

MAGIC observations of the February 2014 flare of 1ES 1011+496 and ensuing constraint of the EBL density

70   0   0.0 ( 0 )
 نشر من قبل Adiv Gonzalez Mu\\~noz
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In February-March 2014, the MAGIC telescopes observed the high-frequency peaked BL Lac 1ES 1011+496 (z=0.212) in flaring state at very-high energy (VHE, E>100GeV). The flux reached a level more than 10 times higher than any previously recorded flaring state of the source. We present the description of the characteristics of the flare presenting the light curve and the spectral parameters of the night-wise spectra and the average spectrum of the whole period. From these data we aim at detecting the imprint of the Extragalactic Background Light (EBL) in the VHE spectrum of the source, in order to constrain its intensity in the optical band. For this we implement the method developed by the H.E.S.S. collaboration in which the intrinsic energy spectrum of the source is modeled with a simple function, and the EBL-induced optical depth is calculated using a template EBL model. The likelihood of the observed spectrum is then maximized, including a normalization factor for the EBL opacity among the free parameters. From the data collected differential energy spectra was produced for all nights of the observed period. Evaluating the changes in the fit parameters we conclude that the spectral shape for most of the nights were compatible, regardless of the flux level, which enabled us to produce an average spectrum from which the EBL imprint could be constrained. The likelihood ratio test shows that the model with an EBL density 1.07(-0.20,+0.24)_{stat+sys}, relative to the one in the tested EBL template (Dominguez et al.2011), is preferred at the 4.6 sigma level to the no-EBL hypothesis, with the assumption that the intrinsic source spectrum can be modeled as a log-parabola. This would translate into a constraint of the EBL density in the wavelength range [0.24 um,4.25 um], with a peak value at 1.4 um of F=12.27_{-2.29}^{+2.75} nW m^{-2} sr^{-1}, including systematics.

قيم البحث

اقرأ أيضاً

The BL Lac object 1ES 1011+496 was discovered at Very High Energy gamma-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Metsahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability. The differential VHE spectrum could be described with a power-law function. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder when brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE gamma-ray bands could be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike concluded in previous work based on nonsimultaneous data, and is well described by a standard one zone synchrotron self Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.
1ES 1011+496 $(z=0.212)$ was discovered in very high energy (VHE, E >100 GeV) $gamma$-rays with MAGIC in 2007. The absence of simultaneous data at lower energies led to a rather incomplete characterization of the broadband spectral energy distributio n (SED). We study the source properties and the emission mechanisms, probing whether a simple one-zone synchrotron-self-Compton (SSC) scenario is able to explain the observed broadband spectrum. We analyzed VHE to radio data from 2011 and 2012 collected by MAGIC, $Fermi$-LAT, $Swift$, KVA, OVRO, and Metsahovi in addition to optical polarimetry data and radio maps from the Liverpool Telescope and MOJAVE. The VHE spectrum was fit with a simple power law with a photon index of $3.69pm0.22$ and a flux above 150 GeV of $(1.46pm0.16)times10^{-11}$ ph cm$^{-2}$ s$^{-1}$. 1ES 1011+496 was found to be in a generally quiescent state at all observed wavelengths, showing only moderate variability from radio to X-rays. A low degree of polarization of less than 10% was measured in optical, while some bright features polarized up to 60% were observed in the radio jet. A similar trend in the rotation of the electric vector position angle was found in optical and radio. The radio maps indicated a superluminal motion of $1.8pm0.4,c$, which is the highest speed statistically significantly measured so far in a high-frequency-peaked BL Lac. For the first time, the high-energy bump in the broadband SED of 1ES 1011+496 could be fully characterized from 0.1 GeV to 1 TeV which permitted a more reliable interpretation within the one-zone SSC scenario. The polarimetry data suggest that at least part of the optical emission has its origin in some of the bright radio features, while the low polarization in optical might be due to the contribution of parts of the radio jet with different orientations of the magnetic field to the optical emission.
A detailed multi-epoch study of the broadband spectral behaviour of the very high energy (VHE) source, 1ES,1011+496, provides us with valuable information regarding the underlying particle distribution. Simultaneous observations of the source at opti cal/ UV/ X-ray/ $gamma$-ray during three different epochs, as obtained from Swift-UVOT/ Swift-XRT/ Fermi-LAT, are supplemented with the information available from the VHE telescope array, HAGAR. The longterm flux variability at the Fermi-LAT energies is clearly found to be lognormal. It is seen that the broadband spectral energy distribution (SED) of 1ES,1011+496 can be successfully reproduced by synchrotron and synchrotron self Compton emission models. Notably, the observed curvature in the photon spectrum at X-ray energies demands a smooth transition of the underlying particle distribution from a simple power law to a power law with an exponential cutoff or a smooth broken power law distribution, which may possibly arise when the escape of the particles from the main emission region is energy dependent. Specifically, if the particle escape rate is related to its energy as $E^{0.5}$ then the observed photon spectrum is consistent with the ones observed during the various epochs.
Blazars, active galactic nuclei whose jet axis is pointed towards the observer, constitute the most numerous class of extragalactic very high energy (VHE, E > 100, GeV) gamma-ray emitters. The MAGIC experiment, a system of two Imaging Atmospheric Che renkov Telescopes located in the Canary Island of La Palma (Northern hemisphere), with an energy threshold of 50 GeV, is a well suited experiment for observations of such objects. Here we present the discovery of the BL Lac 1ES 1727+502 (z = 0.055) as VHE source. This object was identified as a promising TeV candidate based on archival data and the observation that lead to this detection was not triggered by any high state alert in other wavebands. The MAGIC observations are complemented by other observations are lower frequencies: optical data from the KVA telescope, UV, optical and X-ray archival data taken with the instruments on board the Swift satellite and high energy (HE, 300 MeV < E < 100 GeV) data from the textit{Fermi}-LAT instrument. We studied the spectral energy distribution of 1ES 1727+502 and interpreted it with a one-zone synchrotron self-Compton model with parameters that are typical for this class of sources.
The VERITAS collaboration reports the detection of very-high-energy (VHE) gamma-ray emission from the high-frequency-peaked BL Lac object 1ES 1218+304 located at a redshift of z=0.182. A gamma-ray signal was detected with a statistical significance o f 10.4 standard deviations (10.4 sigma) for the observations taken during the first three months of 2007, confirming the discovery of this object made by the MAGIC collaboration. The photon spectrum between ~160 GeV and ~1.8 TeV is well described by a power law with an index of Gamma = 3.08 +/- 0.34_stat +/- 0.2_sys. The integral flux is Phi(E > 200 GeV) = (12.2 +/- 2.6) X 10^-12 cm^-2 s^-1, which corresponds to ~6% of that of the Crab Nebula. The light curve does not show any evidence for VHE flux variability. Using lower limits on the density of the extragalactic background light in the near to mid-infrared we are able to limit the range of intrinsic energy spectra for 1ES 1218+304. We show that the intrinsic photon spectrum has an index that is harder than Gamma = 2.32 +/- 0.37_stat. When including constraints from the spectra of 1ES 1101-232 and 1ES 0229+200, the spectrum of 1ES 1218+304 is likely to be harder than Gamma = 1.86 +/- 0.37_stat.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا