ترغب بنشر مسار تعليمي؟ اضغط هنا

Sequential Mechanisms with ex-post Participation Guarantees

78   0   0.0 ( 0 )
 نشر من قبل Nima Haghpanah
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a characterization of revenue-optimal dynamic mechanisms in settings where a monopolist sells k items over k periods to a buyer who realizes his value for item i in the beginning of period i. We require that the mechanism satisfies a strong individual rationality constraint, requiring that the stage utility of each agent be positive during each period. We show that the optimum mechanism can be computed by solving a nested sequence of static (single-period) mechanisms that optimize a tradeoff between the surplus of the allocation and the buyers utility. We also provide a simple dynamic mechanism that obtains at least half of the optimal revenue. The mechanism either ignores history and posts the optimal monopoly price in each period, or allocates with a probability that is independent of the current report of the agent and is based only on previous reports. Our characterization extends to multi-agent auctions. We also formulate a discounted infinite horizon version of the problem, where we study the performance of Markov mechanisms.



قيم البحث

اقرأ أيضاً

Bayesian persuasion is the study of information sharing policies among strategic agents. A prime example is signaling in online ad auctions: what information should a platform signal to an advertiser regarding a user when selling the opportunity to a dvertise to her? Practical considerations such as preventing discrimination, protecting privacy or acknowledging limited attention of the information receiver impose constraints on information sharing. In this work, we propose and analyze a simple way to mathematically model such constraints as restrictions on Receivers admissible posterior beliefs. We consider two families of constraints - ex ante and ex post, where the latter limits each instance of Sender-Receiver communication, while the former more general family can also pose restrictions in expectation. For the ex ante family, Doval and Skreta establish the existence of an optimal signaling scheme with a small number of signals - at most the number of constraints plus the number of states of nature; we show this result is tight and provide an alternative proof for it. For the ex post family, we tighten a bound of V{o}lund, showing that the required number of signals is at most the number of states of nature, as in the original Kamenica-Gentzkow setting. As our main algorithmic result, we provide an additive bi-criteria FPTAS for an optimal constrained signaling scheme assuming a constant number of states; we improve the approximation to single-criteria under a Slater-like regularity condition. The FPTAS holds under standard assumptions; relaxed assumptions yield a PTAS. Finally, we bound the ratio between Senders optimal utility under convex ex ante constraints and the corresponding ex post constraints. This bound applies to finding an approximately welfare-maximizing constrained signaling scheme in ad auctions.
It is well-known that for several natural decision problems no budget balanced Groves mechanisms exist. This has motivated recent research on designing variants of feasible Groves mechanisms (termed as `redistribution of VCG (Vickrey-Clarke-Groves) p ayments) that generate reduced deficit. With this in mind, we study sequential mechanisms and consider optimal strategies that could reduce the deficit resulting under the simultaneous mechanism. We show that such strategies exist for the sequential pivotal mechanism of the well-known public project problem. We also exhibit an optimal strategy with the property that a maximal social welfare is generated when each player follows it. Finally, we show that these strategies can be achieved by an implementation in Nash equilibrium.
We discuss voting scenarios in which the set of voters (agents) and the set of alternatives are the same; that is, voters select a single representative from among themselves. Such a scenario happens, for instance, when a committee selects a chairper son, or when peer researchers select a prize winner. Our model assumes that each voter either renders worthy (confirms) or unworthy any other agent. We further assume that the prime goal of each agent is to be selected himself. Only if that is not feasible, will he try to get one of those that he confirms selected. In this paper, we investigate the open-sequential voting system in the above model. We consider both plurality (where each voter has one vote) and approval (where a voter may vote for any subset). Our results show that it is possible to find scenarios in which the selected agent is much less popular than the optimal (most popular) agent. We prove, however, that in the case of approval voting, the ratio between their popularity is always bounded from above by 2. In the case of plurality voting, we show that there are cases in which some of the equilibria give an unbounded ratio, but there always exists at least one equilibrium with ratio 2 at most.
Motivated by applications such as college admission and insurance rate determination, we propose an evaluation problem where the inputs are controlled by strategic individuals who can modify their features at a cost. A learner can only partially obse rve the features, and aims to classify individuals with respect to a quality score. The goal is to design an evaluation mechanism that maximizes the overall quality score, i.e., welfare, in the population, taking any strategic updating into account. We further study the algorithmic aspect of finding the welfare maximizing evaluation mechanism under two specific settings in our model. When scores are linear and mechanisms use linear scoring rules on the observable features, we show that the optimal evaluation mechanism is an appropriate projection of the quality score. When mechanisms must use linear thresholds, we design a polynomial time algorithm with a (1/4)-approximation guarantee when the underlying feature distribution is sufficiently smooth and admits an oracle for finding dense regions. We extend our results to settings where the prior distribution is unknown and must be learned from samples.
In recent years, Win-Stay-Lose-Learn rule has attracted wide attention as an effective strategy updating rule, and voluntary participation is proposed by introducing a third strategy in Prisoners dilemma game. Some researches show that combining Win- Stay-Lose-Learn rule with voluntary participation could promote cooperation more significantly under moderate temptation values, however, cooperators survival under high aspiration levels and high temptation values is still a challenging problem. In this paper, inspired by Achievement Motivation Theory, a Dynamic-Win-Stay-Lose-Learn rule with voluntary participation is investigated, where a dynamic aspiration process is introduced to describe the co-evolution of individuals strategies and aspirations. It is found that cooperation is extremely promoted and defection is almost extinct in our model, even when the initial aspiration levels and temptation values are high. The combination of dynamic aspiration and voluntary participation plays an active role since loners could survive under high initial aspiration levels and they will expand stably because of their fixed payoffs. The robustness of our model is also discussed and some adverse structures are found which should be alerted in the evolutionary process. Our work provides a more realistic model and shows that cooperators may prevail defectors in an unfavorable initial environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا