ترغب بنشر مسار تعليمي؟ اضغط هنا

Improvement of Spectroscopic Performance using a Charge-sensitive Amplifier Circuit for an X-Ray Astronomical SOI Pixel Detector

51   0   0.0 ( 0 )
 نشر من قبل Ayaki Takeda
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have been developing monolithic active pixel sensors series, named XRPIX, based on the silicon-on-insulator (SOI) pixel technology, for future X-ray astronomical satellites. The XRPIX series offers high coincidence time resolution ({rm sim}1 {rm mu}s), superior readout time ({rm sim}10 {rm mu}s), and a wide energy range (0.5--40 keV). In the previous study, we successfully demonstrated X-ray detection by event-driven readout of XRPIX2b. We here report recent improvements in spectroscopic performance. We successfully increased the gain and reduced the readout noise in XRPIX2b by decreasing the parasitic capacitance of the sense-node originated in the buried p-well (BPW). On the other hand, we found significant tail structures in the spectral response due to the loss of the charge collection efficiency when a small BPW is employed. Thus, we increased the gain in XRPIX3b by introducing in-pixel charge sensitive amplifiers instead of having even smaller BPW. We finally achieved the readout noise of 35 e{rm ^{-}} (rms) and the energy resolution of 320 eV (FWHM) at 6 keV without significant loss of the charge collection efficiency.

قيم البحث

اقرأ أيضاً

We have been developing monolithic active pixel sensors, known as Kyotos X-ray SOIPIXs, based on the CMOS SOI (silicon-on-insulator) technology for next-generation X-ray astronomy satellites. The event trigger output function implemented in each pixe l offers microsecond time resolution and enables reduction of the non-X-ray background that dominates the high X-ray energy band above 5--10 keV. A fully depleted SOI with a thick depletion layer and back illumination offers wide band coverage of 0.3--40 keV. Here, we report recent progress in the X-ray SOIPIX development. In this study, we achieved an energy resolution of 300~eV (FWHM) at 6~keV and a read-out noise of 33~e- (rms) in the frame readout mode, which allows us to clearly resolve Mn-K$alpha$ and K$beta$. Moreover, we produced a fully depleted layer with a thickness of $500~{rm mu m}$. The event-driven readout mode has already been successfully demonstrated.
We have been developing monolithic active pixel sensors for X-rays based on the silicon-on-insulator technology. Our device consists of a low-resistivity Si layer for readout CMOS electronics, a high-resistivity Si sensor layer, and a SiO$_2$ layer b etween them. This configuration allows us both high-speed readout circuits and a thick (on the order of $100~mu{rm m}$) depletion layer in a monolithic device. Each pixel circuit contains a trigger output function, with which we can achieve a time resolution of $lesssim 10~mu{rm s}$. One of our key development items is improvement of the energy resolution. We recently fabricated a device named XRPIX6E, to which we introduced a pinned depleted diode (PDD) structure. The structure reduces the capacitance coupling between the sensing area in the sensor layer and the pixel circuit, which degrades the spectral performance. With XRPIX6E, we achieve an energy resolution of $sim 150$~eV in full width at half maximum for 6.4-keV X-rays. In addition to the good energy resolution, a large imaging area is required for practical use. We developed and tested XRPIX5b, which has an imaging area size of $21.9~{rm mm} times 13.8~{rm mm}$ and is the largest device that we ever fabricated. We successfully obtain X-ray data from almost all the $608 times 384$ pixels with high uniformity.
We have been developing a new type of X-ray pixel sensors, XRPIX, allowing us to perform imaging spectroscopy in the wide energy band of 1-20 keV for the future Japanese X-ray satellite FORCE. The XRPIX devices are fabricated with complementary metal -oxide-semiconductor silicon-on-insulator technology, and have the Event-Driven readout mode, in which only a hit event is read out by using hit information from a trigger output function equipped with each pixel. This paper reports on the low-energy X-ray performance of the XRPIX6E device with a Pinned Depleted Diode (PDD) structure. The PDD structure especially reduces the readout noise, and hence is expected to largely improve the quantum efficiencies for low-energy X-rays. While F-K X-rays at 0.68 keV and Al-K X-rays at 1.5 keV are successfully detected in the Frame readout mode, in which all pixels are read out serially without using the trigger output function, the device is able to detect Al-K X-rays, but not F-K X-rays in the Event-Driven readout mode. Non-uniformity is observed in the counts maps of Al-K X-rays in the Event-Driven readout mode, which is due to region-to-region variation of the pedestal voltages at the input to the comparator circuit. The lowest available threshold energy is 1.1 keV for a small region in the device where the non-uniformity is minimized. The noise of the charge sensitive amplifier at the sense node and the noise related to the trigger output function are ~$18~e^-$ (rms) and ~$13~e^-$ (rms), respectively.
We report on a measurement of the size of charge clouds produced by X-ray photons in X-ray SOI (Silicon-On-Insulator) pixel sensor named XRPIX. We carry out a beam scanning experiment of XRPIX using a monochromatic X-ray beam at 5.0 keV collimated to $sim 10$ $mu$m with a 4-$mu$m$phi$ pinhole, and obtain the spatial distribution of single-pixel events at a sub-pixel scale. The standard deviation of charge clouds of 5.0 keV X-ray is estimated to be $sigma_{rm cloud} = 4.30 pm 0.07$ $mu$m. Compared to the detector response simulation, the estimated charge cloud size is well explained by a combination of photoelectron range, thermal diffusion, and Coulomb repulsion. Moreover, by analyzing the fraction of multi-pixel events in various energies, we find that the energy dependence of the charge cloud size is also consistent with the simulation.
65 - K. Hagino , K. Negishi , K. Oono 2019
We have been developing the X-ray silicon-on-insulator (SOI) pixel sensor called XRPIX for future astrophysical satellites. XRPIX is a monolithic active pixel sensor consisting of a high-resistivity Si sensor, thin SiO$_2$ insulator, and CMOS pixel c ircuits that utilize SOI technology. Since XRPIX is capable of event-driven readouts, it can achieve high timing resolution greater than $sim 10{rm ~mu s}$, which enables low background observation by adopting the anti-coincidence technique. One of the major issues in the development of XRPIX is the electrical interference between the sensor layer and circuit layer, which causes nonuniform detection efficiency at the pixel boundaries. In order to reduce the interference, we introduce a Double-SOI (D-SOI) structure, in which a thin Si layer (middle Si) is added to the insulator layer of the SOI structure. In this structure, the middle Si layer works as an electrical shield to decouple the sensor layer and circuit layer. We measured the detector response of the XRPIX with D-SOI structure at KEK. We irradiated the X-ray beam collimated with $4{rm ~mu mphi}$ pinhole, and scanned the device with $6{rm ~mu m}$ pitch, which is 1/6 of the pixel size. In this paper, we present the improvement in the uniformity of the detection efficiency in D-SOI sensors, and discuss the detailed X-ray response and its physical origins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا