ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of Charge Cloud Size in X-ray SOI Pixel Sensors

110   0   0.0 ( 0 )
 نشر من قبل Kouichi Hagino
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a measurement of the size of charge clouds produced by X-ray photons in X-ray SOI (Silicon-On-Insulator) pixel sensor named XRPIX. We carry out a beam scanning experiment of XRPIX using a monochromatic X-ray beam at 5.0 keV collimated to $sim 10$ $mu$m with a 4-$mu$m$phi$ pinhole, and obtain the spatial distribution of single-pixel events at a sub-pixel scale. The standard deviation of charge clouds of 5.0 keV X-ray is estimated to be $sigma_{rm cloud} = 4.30 pm 0.07$ $mu$m. Compared to the detector response simulation, the estimated charge cloud size is well explained by a combination of photoelectron range, thermal diffusion, and Coulomb repulsion. Moreover, by analyzing the fraction of multi-pixel events in various energies, we find that the energy dependence of the charge cloud size is also consistent with the simulation.

قيم البحث

اقرأ أيضاً

65 - K. Hagino , K. Negishi , K. Oono 2019
We have been developing the X-ray silicon-on-insulator (SOI) pixel sensor called XRPIX for future astrophysical satellites. XRPIX is a monolithic active pixel sensor consisting of a high-resistivity Si sensor, thin SiO$_2$ insulator, and CMOS pixel c ircuits that utilize SOI technology. Since XRPIX is capable of event-driven readouts, it can achieve high timing resolution greater than $sim 10{rm ~mu s}$, which enables low background observation by adopting the anti-coincidence technique. One of the major issues in the development of XRPIX is the electrical interference between the sensor layer and circuit layer, which causes nonuniform detection efficiency at the pixel boundaries. In order to reduce the interference, we introduce a Double-SOI (D-SOI) structure, in which a thin Si layer (middle Si) is added to the insulator layer of the SOI structure. In this structure, the middle Si layer works as an electrical shield to decouple the sensor layer and circuit layer. We measured the detector response of the XRPIX with D-SOI structure at KEK. We irradiated the X-ray beam collimated with $4{rm ~mu mphi}$ pinhole, and scanned the device with $6{rm ~mu m}$ pitch, which is 1/6 of the pixel size. In this paper, we present the improvement in the uniformity of the detection efficiency in D-SOI sensors, and discuss the detailed X-ray response and its physical origins.
We have been developing monolithic active pixel sensors for X-rays based on the silicon-on-insulator technology. Our device consists of a low-resistivity Si layer for readout CMOS electronics, a high-resistivity Si sensor layer, and a SiO$_2$ layer b etween them. This configuration allows us both high-speed readout circuits and a thick (on the order of $100~mu{rm m}$) depletion layer in a monolithic device. Each pixel circuit contains a trigger output function, with which we can achieve a time resolution of $lesssim 10~mu{rm s}$. One of our key development items is improvement of the energy resolution. We recently fabricated a device named XRPIX6E, to which we introduced a pinned depleted diode (PDD) structure. The structure reduces the capacitance coupling between the sensing area in the sensor layer and the pixel circuit, which degrades the spectral performance. With XRPIX6E, we achieve an energy resolution of $sim 150$~eV in full width at half maximum for 6.4-keV X-rays. In addition to the good energy resolution, a large imaging area is required for practical use. We developed and tested XRPIX5b, which has an imaging area size of $21.9~{rm mm} times 13.8~{rm mm}$ and is the largest device that we ever fabricated. We successfully obtain X-ray data from almost all the $608 times 384$ pixels with high uniformity.
We have been developing a new type of X-ray pixel sensors, XRPIX, allowing us to perform imaging spectroscopy in the wide energy band of 1-20 keV for the future Japanese X-ray satellite FORCE. The XRPIX devices are fabricated with complementary metal -oxide-semiconductor silicon-on-insulator technology, and have the Event-Driven readout mode, in which only a hit event is read out by using hit information from a trigger output function equipped with each pixel. This paper reports on the low-energy X-ray performance of the XRPIX6E device with a Pinned Depleted Diode (PDD) structure. The PDD structure especially reduces the readout noise, and hence is expected to largely improve the quantum efficiencies for low-energy X-rays. While F-K X-rays at 0.68 keV and Al-K X-rays at 1.5 keV are successfully detected in the Frame readout mode, in which all pixels are read out serially without using the trigger output function, the device is able to detect Al-K X-rays, but not F-K X-rays in the Event-Driven readout mode. Non-uniformity is observed in the counts maps of Al-K X-rays in the Event-Driven readout mode, which is due to region-to-region variation of the pedestal voltages at the input to the comparator circuit. The lowest available threshold energy is 1.1 keV for a small region in the device where the non-uniformity is minimized. The noise of the charge sensitive amplifier at the sense node and the noise related to the trigger output function are ~$18~e^-$ (rms) and ~$13~e^-$ (rms), respectively.
X-ray SOI pixel sensors, XRPIX, are being developed for the next-generation X-ray astronomical satellite, FORCE. The XRPIX are fabricated with the SOI technology, which makes it possible to integrate a high-resistivity Si sensor and a low-resistivity Si CMOS circuit. The CMOS circuit in each pixel is equipped with a trigger function, allowing us to read out outputs only from the pixels with X-ray signals at the timing of X-ray detection. This function thus realizes high throughput and high time resolution, which enables to employ anti-coincidence technique for background rejection. A new series of XRPIX named XRPIX6E developed with a pinned depleted diode (PDD) structure improves spectral performance by suppressing the interference between the sensor and circuit layers. When semiconductor X-ray sensors are used in space, their spectral performance is generally degraded owing to the radiation damage caused by high-energy protons. Therefore, before using an XRPIX in space, it is necessary to evaluate the extent of degradation of its spectral performance by radiation damage. Thus, we performed a proton irradiation experiment for XRPIX6E for the first time at HIMAC in the NIRS. We irradiated XRPIX6E with high-energy protons with a total dose of up to 40 krad, equivalent to 400 years of irradiation in orbit. The 40-krad irradiation degraded the energy resolution of XRPIX6E by 25 $pm$ 3%, yielding an energy resolution of 260.1 $pm$ 5.6 eV at the full width half maximum for 5.9 keV X-rays. However, the value satisfies the requirement for FORCE, 300 eV at 6 keV, even after the irradiation. It was also found that the PDD XRPIX has enhanced radiation hardness compared to previous XRPIX devices. In addition, we investigated the degradation of the energy resolution; it was shown that the degradation would be due to increasing energy-independent components, e.g., readout noise.
We have been developing event-driven SOI Pixel Detectors, named `XRPIX (X-Ray soiPIXel) based on the silicon-on-insulator (SOI) pixel technology, for the future X-ray astronomical satellite with wide band coverage from 0.5 keV to 40 keV. XRPIX has ev ent trigger output function at each pixel to acquire a good time resolution of a few $mu rm s$ and has Correlated Double Sampling function to reduce electric noises. The good time resolution enables the XRPIX to reduce Non X-ray Background in the high energy band above 10,keV drastically by using anti-coincidence technique with active shield counters surrounding XRPIX. In order to increase the soft X-ray sensitivity, it is necessary to make the dead layer on the X-ray incident surface as thin as possible. Since XRPIX1b, which is a device at the initial stage of development, is a front-illuminated (FI) type of XRPIX, low energy X-ray photons are absorbed in the 8 $rm mu$m thick circuit layer, lowering the sensitivity in the soft X-ray band. Therefore, we developed a back-illuminated (BI) device XRPIX2b, and confirmed high detection efficiency down to 2.6 keV, below which the efficiency is affected by the readout noise. In order to further improve the detection efficiency in the soft X-ray band, we developed a back-illuminated device XRPIX3b with lower readout noise. In this work, we irradiated 2--5 keV X-ray beam collimated to 4 $rm mu m phi$ to the sensor layer side of the XRPIX3b at 6 $rm mu m$ pitch. In this paper, we reported the uniformity of the relative detection efficiency, gain and energy resolution in the subpixel level for the first time. We also confirmed that the variation in the relative detection efficiency at the subpixel level reported by Matsumura et al. has improved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا