ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasiparticle band structure of the almost-gapless transition-metal-based Heusler semiconductors

67   0   0.0 ( 0 )
 نشر من قبل Iosif Galanakis
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transition-metal-based Heusler semiconductors are promising materials for a variety of applications ranging from spintronics to thermoelectricity. Employing the $GW$ approximation within the framework of the FLAPW method, we study the quasi-particle band structure of a number of such compounds being almost gapless semiconductors. We find that in contrast to the textit{sp}-electron based semiconductors such as Si and GaAs, in these systems the many-body corrections have a minimal effect on the electronic band structure and the energy band gap increases by less than 0.2~eV, which makes the starting point density functional theory (DFT) a good approximation for the description of electronic and optical properties of these materials. Furthermore, the band gap can be tuned either by the variation of the lattice parameter or by the substitution of the emph{sp}-chemical element.



قيم البحث

اقرأ أيضاً

74 - Qiang Gao , Ingo Opahle , 2018
Based on high throughput density functional theory calculations, we performed systematic screening for spin-gapless semiconductors (SGSs) in quaternary Heusler alloys XX 0 YZ (X, X 0 , and Y are transition metal elements without Tc, and Z is one of B , Al, Ga, In, Si, Ge, Sn, Pb, P, As, Sb, and Bi). Following the empirical rule, we focused on compounds with 21, 26, or 28 valence electrons, resulting in 12, 000 possible chemical compositions. After systematically evaluating the thermodynamic, mechanical, and dynamical stabilities, we successfully identified 70 stable SGSs, confirmed by explicit electronic structure calculations with proper magnetic ground states. It is demonstrated that all four types of SGSs can be realized, defined based on the spin characters of the bands around the Fermi energy, and the type-II SGSs show promising transport properties for spintronic applications. The effect of spin-orbit coupling is investigated, resulting in large anisotropic magnetoresistance and anomalous Nernst effects.
Employing first principles electronic structure calculations in conjunction with the frozen-magnon method we calculate exchange interactions, spin-wave dispersion, and spin-wave stiffness constants in inverse-Heusler-based spin gapless semiconductor (SGS) compounds Mn$_2$CoAl, Ti$_2$MnAl, Cr$_2$ZnSi, Ti$_2$CoSi and Ti$_2$VAs. We find that their magnetic behavior is similar to the half-metallic ferromagnetic full-Heusler alloys, i.e., the intersublattice exchange interactions play an essential role in the formation of the magnetic ground state and in determining the Curie temperature, $T_mathrm{c}$. All compounds, except Ti$_2$CoSi possess a ferrimagnetic ground state. Due to the finite energy gap in one spin channel, the exchange interactions decay sharply with the distance, and hence magnetism of these SGSs can be described considering only nearest and next-nearest neighbor exchange interactions. The calculated spin-wave dispersion curves are typical for ferrimagnets and ferromagnets. The spin-wave stiffness constants turn out to be larger than those of the elementary 3$d$-ferromagnets. Calculated exchange parameters are used as input to determine the temperature dependence of the magnetization and $T_mathrm{c}$ of the SGSs. We find that the $T_mathrm{c}$ of all compounds is much above the room temperature. The calculated magnetization curve for Mn$_2$CoAl as well as the Curie temperature are in very good agreement with available experimental data. The present study is expected to pave the way for a deeper understanding of the magnetic properties of the inverse-Heusler-based SGSs and enhance the interest in these materials for application in spintronic and magnetoelectronic devices.
A perpendicular electric field breaks the layer symmetry of Bernal-stacked bilayer graphene, resulting in the opening of a band gap and a modification of the effective mass of the charge carriers. Using scanning tunneling microscopy and spectroscopy, we examine standing waves in the local density of states of bilayer graphene formed by scattering from a bilayer/trilayer boundary. The quasiparticle interference properties are controlled by the bilayer graphene band structure, allowing a direct local probe of the evolution of the band structure of bilayer graphene as a function of electric field. We extract the Slonczewski-Weiss-McClure model tight binding parameters as $gamma_0 = 3.1$ eV, $gamma_1 = 0.39$ eV, and $gamma_4 = 0.22$ eV.
When exploring new materials for their potential in (opto)electronic device applications, it is important to understand the role of various carrier interaction and scattering processes. Research on transition metal dichalcogenide (TMD) semiconductors has recently progressed towards the realisation of working devices, which involve light-emitting diodes, nanocavity lasers, and single-photon emitters. In these two-dimensional atomically thin semiconductors, the Coulomb interaction is known to be much stronger than in quantum wells of conventional semiconductors like GaAs, as witnessed by the 50 times larger exciton binding energy. The question arises, whether this directly translates into equivalently faster carrier-carrier Coulomb scattering of excited carriers. Here we show that a combination of ab-initio band-structure and many-body theory predicts carrier relaxation on a 50-fs time scale, which is less than an order of magnitude faster than in quantum wells. These scattering times compete with the recently reported sub-ps exciton recombination times, thus making it harder to achieve population inversion and lasing.
144 - Wenhong Wang , Yin Du , Enke Liu 2012
Half-Heusler YPtSb thin films were fabricated by magnetron co-sputtering method on MgO-buffered SiO2/Si(001) substrates. X-ray diffraction pattern and Energy dispersive X-ray spectroscopy confirmed the high-quality growth and stoichiometry. The tempe rature dependence of the resistivity shows a semiconducting-type behavior down to low temperature. The Hall mobility was determined to be 450 cm2/Vs at 300K, which is much higher than the bulk value (300 cm2/Vs). In-plane magnetoresistance (MR) measurements with fields applied along and perpendicular to the current direction show opposite MR signs, which suggests the possible existence of the topological surface states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا