ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Nuclear Spin-Lattice Relaxation Time at the Nanoscale

86   0   0.0 ( 0 )
 نشر من قبل Jelmer J.T. Wagenaar
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nuclear spin-lattice relaxation times are measured on copper using magnetic resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up the possibility to measure the magnetic properties of inhomogeneous electron systems realized in oxide interfaces, topological insulators and other strongly correlated electron systems such as high-Tc superconductors.



قيم البحث

اقرأ أيضاً

The recent discovery of ferromagnetism in 2D van der Waals (vdw) crystals has generated widespread interest, owing to their potential for fundamental and applied research. Advancing the understanding and applications of vdw magnets requires methods t o quantitatively probe their magnetic properties on the nanoscale. Here, we report the study of atomically thin crystals of the vdw magnet CrI$_3$ down to individual monolayers using scanning single-spin magnetometry, and demonstrate quantitative, nanoscale imaging of magnetisation, localised defects and magnetic domains. We determine the magnetisation of CrI$_3$ monolayers to be $approx16~mu_B/$nm$^2$ and find comparable values in samples with odd numbers of layers, whereas the magnetisation vanishes when the number of layers is even. We also establish that this inscrutable even-odd effect is intimately connected to the material structure, and that structural modifications can induce switching between ferro- and anti-ferromagnetic interlayer ordering. Besides revealing new aspects of magnetism in atomically thin CrI$_3$ crystals, these results demonstrate the power of single-spin scanning magnetometry for the study of magnetism in 2D vdw magnets.
Using fast electron spin resonance spectroscopy of a single nitrogen-vacancy defect in diamond, we demonstrate real-time readout of the Overhauser field produced by its nuclear spin environment under ambient conditions. These measurements enable narr owing the Overhauser field distribution by post-selection, corresponding to a conditional preparation of the nuclear spin bath. Correlations of the Overhauser field fluctuations are quantitatively inferred by analysing the Allan deviation over consecutive measurements. This method allows to extract the dynamics of weakly coupled nuclear spins of the reservoir.
113 - K. G. Rana , S. Parui , 2013
We investigate electron transport across a complex oxide heterointerface of La$_{0.67}$Sr$_{0.33}$MnO$_3$ (LSMO) on Nb:SrTiO$_3$ (Nb:STO) at different temperatures. For this, we employ the conventional current-voltage method as well as the technique of Ballistic Electron Emission Microscopy (BEEM), which can probe lateral inhomogeneities in transport at the nanometer scale. From current-voltage measurements, we find that the Schottky Barrier height (SBH) at the LSMO/Nb:STO interface decreases at low temperatures accompanied by a larger than unity ideality factor. This is ascribed to the tunneling dominated transport caused by the narrowing of the depletion width at the interface. However, BEEM studies of such unbiased interfaces, do not exhibit SBH lowering at low temperatures, implying that this is triggered by the modification of the interface due to an applied bias and is not an intrinsic property of the interface. Interestingly, the SBH at the nanoscale, as extracted from BEEM studies, at different locations in the device is found to be spatially homogeneous and similar both at room temperature and at low temperatures. Our results highlight the application of BEEM in characterizing electron transport and their homogeneity at such unbiased complex oxide interfaces and yields new insights into the origin of the temperature dependence of the SBH at biased interfaces.
Understanding the dynamics of molecules adsorbed to surfaces or confined to small volumes is a matter of increasing scientific and technological importance. Here, we demonstrate a pulse protocol using individual paramagnetic nitrogen vacancy (NV) cen ters in diamond to observe the time evolution of 1H spins from organic molecules located a few nanometers from the diamond surface. The protocol records temporal correlations among the interacting 1H spins, and thus is sensitive to the local system dynamics via its impact on the nuclear spin relaxation and interaction with the NV. We are able to gather information on the nanoscale rotational and translational diffusion dynamics by carefully analyzing the time dependence of the NMR signal. Applying this technique to various liquid and solid samples, we find evidence that liquid samples form a semi-solid layer of 1.5 nm thickness on the surface of diamond, where translational diffusion is suppressed while rotational diffusion remains present. Extensions of the present technique could be adapted to highlight the chemical composition of molecules tethered to the diamond surface or to investigate thermally or chemically activated dynamical processes such as molecular folding.
Spin-lattice relaxation of the nuclear spin system in p-type GaAs is studied using a three-stage experimental protocol including optical pumping and measuring the difference of the nuclear spin polarization before and after a dark interval of variabl e length. This method allows us to measure the spin-lattice relaxation time $T_1$ of optically pumped nuclei in the dark, that is, in the absence of illumination. The measured $T_1$ values fall into the sub-second time range, being three orders of magnitude shorter than in earlier studied n-type GaAs. The drastic difference is further emphasized by magnetic-field and temperature dependences of $T_1$ in p-GaAs, showing no similarity to those in n-GaAs. This unexpected behavior is explained within a developed theoretical model involving quadrupole relaxation of nuclear spins, which is induced by electric fields within closely spaced donor-acceptor pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا