ترغب بنشر مسار تعليمي؟ اضغط هنا

First 3 mm-VLBI imaging of the two-sided jet in Cygnus A. Zooming into the launching region

76   0   0.0 ( 0 )
 نشر من قبل Bia Boccardi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present for the first time Very-Long-Baseline Interferometry images of the radio galaxy Cygnus A at the frequency of $86$ $rm GHz$. Thanks to the high spatial resolution of only ${sim}200$ Schwarzschild radii ($R_{bf S}$), such observations provide an extremely detailed view of the nuclear regions in this archetypal object and allow us to derive important constraints for theoretical models describing the launching of relativistic jets. A pixel-based analysis of the jet outflow, which still appears two-sided on the scales probed, was performed. By fitting Gaussian functions to the transverse intensity profiles, we could determine the jet width in the nuclear region. The base of the jets appears wide. The minimum measured transverse width of ${sim} (227pm98)$ $R_{bf S}$ is significantly larger than the radius of the Innermost Stable Circular Orbit, suggesting that the outer accretion disk is contributing to the jet launching. The existence of a faster and Doppler de-boosted inner section, powered either from the rotation of the inner regions of the accretion disk or by the spinning black hole, is suggested by the kinematic properties and by the observed limb brightening of the flow.



قيم البحث

اقرأ أيضاً

High-resolution Very-Long-Baseline Interferometry observations of relativistic jets are essential to constrain fundamental parameters of jet formation models. At a distance of 249 Mpc, Cygnus A is a unique target for such studies, being the only Fana roff-Riley Class II radio galaxy for which a detailed sub-parsec scale imaging of the base of both jet and counter-jet can be obtained. Observing at millimeter wavelengths unveils those regions which appear self-absorbed at longer wavelengths and enables an extremely sharp view towards the nucleus to be obtained. We performed 7 mm Global VLBI observations, achieving ultra-high resolution imaging on scales down to 90 $mu$as. This resolution corresponds to a linear scale of only ${sim}$400 Schwarzschild radii (for $M_{mathrm{BH}}=2.5 times 10^9 M_{odot}$). We studied the kinematic properties of the main emission features of the two-sided flow and probed its transverse structure through a pixel-based analysis. We suggest that a fast and a slow layer, with different acceleration gradients, exist in the flow. The extension of the acceleration region is large (${sim} 10^4 R_{mathrm{S}}$), indicating that the jet is magnetically-driven. The limb brightening of both jet and counter-jet and their large opening angles ($phi_mathrm{J}{sim} 10^{circ}$) strongly favor a spine-sheath structure. In the acceleration zone, the flow has a parabolic shape ($rpropto z^{0.55pm 0.07}$). The acceleration gradients and the collimation profile are consistent with the expectations for a jet in equilibrium (Lyubarsky 2009), achieved in the presence of a mild gradient of the external pressure ($ppropto z^{-k}, kleq2$).}
Global VLBI imaging at millimeter and sub-millimeter wavelength overcomes the opacity barrier of synchrotron self-absorption in AGN and opens the direct view into sub-pc scale regions not accessible before. Since AGN variability is more pronounced at short millimeter wavelength, mm-VLBI can reveal structural changes in very early stages after outbursts. When combined with observations at longer wavelength, global 3mm and 1mm VLBI adds very detailed information. This helps to determine fundamental physical properties at the jet base, and in the vicinity of super-massive black holes at the center of AGN. Here we present new results from multi-frequency mm-VLBI imaging of OJ287 during a major outburst. We also report on a successful 1.3mm VLBI experiment with the APEX telescope in Chile. This observation sets a new record in angular resolution. It also opens the path towards future mm-VLBI with ALMA, which aims at the mapping of the black hole event horizon in nearby galaxies, and the study of the roots of jets in AGN.
Results are presented from recent VLBI observations of Cygnus X-1 during X-ray spectral state changes. Using the EVN in e-VLBI mode and the VLBA with disk recording, we observed the X-ray binary at very high angular resolution and studied changes in the compact jets as the source made transitions from hard X-ray states to softer states. The radio light curves show that these transitions were accompanied by radio flaring events followed by a quenching of the radio emission, as expected from the current paradigm for disc-jet coupling in X-ray binaries. While we see structural changes in the compact jets during these transitions, there was no evidence for the expected ejection of bright, relativistically-moving jet knots. However, we find strong evidence that the jet does not switch off completely in the soft X-ray state of Cygnus X-1, such that a weak, compact jet persists during this phase of radio quenching.
We report the results of the first two 5 GHz e-VLBI observations of the X-ray binary Cygnus X-3 using the European VLBI Network. Two successful observing sessions were held, on 2006 April 20, when the system was in a quasi-quiescent state several wee ks after a major flare, and on 2006 May 18, a few days after another flare. At the first epoch we detected faint emission probably associated with a fading jet, spatially separated from the X-ray binary. The second epoch in contrast reveals a bright, curved, relativistic jet more than 40 milliarcseconds in extent. In the first, and probably also second epochs, the X-ray binary core is not detected, which may indicate a temporary suppression of jet production as seen in some black hole X-ray binaries in certain X-ray states. Spatially resolved polarisation maps at the second epoch provide evidence of interaction between the ejecta and the surrounding medium. These results clearly demonstrate the importance of rapid analysis of long-baseline observations of transients, such as facilitated by e-VLBI.
172 - G. Dubus , B. Cerutti , G. Henri 2010
High energy gamma-rays have been detected from Cygnus X-3, a system composed of a Wolf-Rayet star and a black hole or neutron star. The gamma-ray emission is linked to the radio emission from the jet launched in the system. The flux is modulated with the 4.8 hr orbital period, as expected if high energy electrons are upscattering photons emitted by the Wolf-Rayet star to gamma-ray energies. This modulation is computed assuming that high energy electrons are located at some distance along a relativistic jet of arbitrary orientation. Modeling shows that the jet must be inclined and that the gamma ray emitting electrons cannot be located within the system. This is consistent with the idea that the electrons gain energy where the jet is recollimated by the stellar wind pressure and forms a shock. Jet precession should strongly affect the gamma-ray modulation shape at different epochs. The power in non-thermal electrons represents a small fraction of the Eddington luminosity only if the inclination is low i.e. if the compact object is a black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا