ترغب بنشر مسار تعليمي؟ اضغط هنا

VLBI constraints on the jet-line of Cygnus X-1

226   0   0.0 ( 0 )
 نشر من قبل Anthony Rushton Dr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Results are presented from recent VLBI observations of Cygnus X-1 during X-ray spectral state changes. Using the EVN in e-VLBI mode and the VLBA with disk recording, we observed the X-ray binary at very high angular resolution and studied changes in the compact jets as the source made transitions from hard X-ray states to softer states. The radio light curves show that these transitions were accompanied by radio flaring events followed by a quenching of the radio emission, as expected from the current paradigm for disc-jet coupling in X-ray binaries. While we see structural changes in the compact jets during these transitions, there was no evidence for the expected ejection of bright, relativistically-moving jet knots. However, we find strong evidence that the jet does not switch off completely in the soft X-ray state of Cygnus X-1, such that a weak, compact jet persists during this phase of radio quenching.



قيم البحث

اقرأ أيضاً

We present evidence for the presence of a weak compact jet during a soft X-ray state of Cygnus X-1. Very-high-resolution radio observations were taken with the VLBA, EVN and MERLIN during a hard-to-soft spectral state change, showing the hard state j et to be suppressed by a factor of about 3-5 in radio flux and unresolved to direct imaging observations (i.e. < 1 mas at 4 cm). High time-resolution X-ray observations with the RXTE-PCA were also taken during the radio monitoring period, showing the source to make the transition from the hard state to a softer state (via an intermediate state), although the source may never have reached the canonical soft state. Using astrometric VLBI analysis and removing proper motion, parallax and orbital motion signatures, the residual positions show a scatter of ~0.2 mas (at 4 cm) and ~3 mas (at 13 cm) along the position angle of the known jet axis; these residuals suggest there is a weak unresolved outflow, with varying size or opacity, during intermediate and soft X-ray states. Furthermore, no evidence was found for extended knots or shocks forming within the jet during the state transition, suggesting the change in outflow rate may not be sufficiently high to produce superluminal knots.
We report a polarimetric constraint on the hard X-ray synchrotron jet emission from the Cygnus X-1 black-hole binary system. The observational data were obtained using the PoGO+ hard X-ray polarimeter in July 2016, when Cygnus X-1 was in the hard sta te. We have previously reported that emission from an extended corona with a low polarization fraction is dominating, and that the polarization angle is perpendicular to the disk surface. In the soft gamma-ray regime, a highly-polarized synchrotron jet is reported with INTEGRAL observations. To constrain the polarization fraction and flux of such a jet component in the hard X-ray regime, we now extend analyses through vector calculations in the Stokes QU plane, where the dominant corona emission and the jet component are considered simultaneously. The presence of another emission component with different polarization angle could partly cancel out the net polarization. The 90% upper limit of the polarization fraction for the additional synchrotron jet component is estimated as <10%, <5%, and <5% for polarization angle perpendicular to the disk surface, parallel to the surface, and aligned with the emission reported by INTEGRAL data, respectively. From the 20-180 keV total flux of 2.6 x 10^-8 erg s^-1 cm^-2, the upper limit of the polarized flux is estimated as <3 x 10^-9 erg s^-1 cm^-2.
Context: Physics behind the soft X-ray light curve asymmetries in Cygnus X-3, a well-known microquasar, was studied. AIMS: Observable effects of the jet close to the line-of-sight were investigated and interpreted within the frame of light curve phys ics. METHODS: The path of a hypothetical imprint of the jet, advected by the WR-wind, was computed and its crossing with the line-of-sight during the binary orbit determined. We explore the possibility that physically this imprint is a formation of dense clumps triggered by jet bow shocks in the wind (clumpy trail). Models for X-ray continuum and emission line light curves were constructed using two absorbers: mass columns along the line-of-sight of i) the WR wind and ii) the clumpy trail, as seen from the compact star. These model light curves were compared with the observed ones from the RXTE/ASM (continuum) and Chandra/HETG (emission lines). Results: We show that the shapes of the Cygnus X-3 light curves can be explained by the two absorbers using the inclination and true anomaly angles of the jet as derived in Dubus et al. (2010) from gamma-ray Fermi/LAT observations. The clumpy trail absorber is much larger for the lines than for the continuum. We suggest that the clumpy trail is a mixture of equilibrium and hot (shock heated) clumps. Conclusions: A possible way for studying jets in binary stars when the jet axis and the line-of-sight are close to each other is demonstrated. The X-ray continuum and emission line light curves of Cygnus X-3 can be explained by two absorbers: the WR companion wind plus an absorber lying in the jet path (clumpy trail). We propose that the clumpy trail absorber is due to dense clumps triggered by jet bow shocks.
Aims: Probe the high-energy ($>$60 MeV) emission from the black hole X-ray binary system, Cygnus X-1, and investigate its origin. Methods: We analysed 7.5 yr of data by Fermi/LAT with the latest PASS8 software version. Results: We report the detectio n of a signal at $sim$8 $sigma$ statistical significance spatially coincident with Cygnus X-1 and a luminosity above 60 MeV of 5.5$times$10$^{33}$ erg s$^{-1}$. The signal is correlated with the hard X-ray flux: the source is observed at high energies only during the hard X-ray spectral state, when the source is known to display persistent, relativistic radio emitting jets. The energy spectrum, extending up to $sim$20 GeV without any sign of spectral break, is well fitted by a power-law function with a photon index of 2.3$pm$0.2. There is a hint of orbital flux variability, with high-energy emission mostly coming around the superior conjunction. Conclusions: We detected GeV emission from Cygnus X-1 and probed that the emission is most likely associated with the relativistic jets. The evidence of flux orbital variability points to the anisotropic inverse Compton on stellar photons as the mechanism at work, thus constraining the emission region to a distance $10^{11}-10^{13}$ cm from the black hole.
Binary systems with an accreting compact object are a unique chance to investigate the strong, clumpy, line-driven winds of early type supergiants by using the compact objects X-rays to probe the wind structure. We analyze the two-component wind of H DE 226868, the O9.7Iab giant companion of the black hole Cyg X-1 using 4.77 Ms of RXTE observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability is most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein-wind: as it does not incorporate clumping, the model does not describe the observations well. A qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could be either due to lack of a focussed wind component in the model or a more complicated clump structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا