ترغب بنشر مسار تعليمي؟ اضغط هنا

Online Isotonic Regression

141   0   0.0 ( 0 )
 نشر من قبل Wojciech Kot{\\l}owski
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the online version of the isotonic regression problem. Given a set of linearly ordered points (e.g., on the real line), the learner must predict labels sequentially at adversarially chosen positions and is evaluated by her total squared loss compared against the best isotonic (non-decreasing) function in hindsight. We survey several standard online learning algorithms and show that none of them achieve the optimal regret exponent; in fact, most of them (including Online Gradient Descent, Follow the Leader and Exponential Weights) incur linear regret. We then prove that the Exponential Weights algorithm played over a covering net of isotonic functions has a regret bounded by $Obig(T^{1/3} log^{2/3}(T)big)$ and present a matching $Omega(T^{1/3})$ lower bound on regret. We provide a computationally efficient version of this algorithm. We also analyze the noise-free case, in which the revealed labels are isotonic, and show that the bound can be improved to $O(log T)$ or even to $O(1)$ (when the labels are revealed in isotonic order). Finally, we extend the analysis beyond squared loss and give bounds for entropic loss and absolute loss.

قيم البحث

اقرأ أيضاً

120 - Ronny Luss , Saharon Rosset 2011
We present a computational and statistical approach for fitting isotonic models under convex differentiable loss functions. We offer a recursive partitioning algorithm which provably and efficiently solves isotonic regression under any such loss func tion. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and subsumes two previous results: the well-known work of Barlow and Brunk (1972) on fitting isotonic regressions subject to specially structured loss functions, and a recursive partitioning algorithm (Spouge et al 2003) for the case of standard (l2-loss) isotonic regression. We demonstrate the advantages of our generalized algorithm on both real and simulated data in two settings: fitting count data using negative Poisson log-likelihood loss, and fitting robust isotonic regression using Hubers loss.
99 - Gerard Biau (LSTA , LPMA , DMA 2014
Distributed computing offers a high degree of flexibility to accommodate modern learning constraints and the ever increasing size of datasets involved in massive data issues. Drawing inspiration from the theory of distributed computation models devel oped in the context of gradient-type optimization algorithms, we present a consensus-based asynchronous distributed approach for nonparametric online regression and analyze some of its asymptotic properties. Substantial numerical evidence involving up to 28 parallel processors is provided on synthetic datasets to assess the excellent performance of our method, both in terms of computation time and prediction accuracy.
Online forecasting under a changing environment has been a problem of increasing importance in many real-world applications. In this paper, we consider the meta-algorithm presented in citet{zhang2017dynamic} combined with different subroutines. We sh ow that an expected cumulative error of order $tilde{O}(n^{1/3} C_n^{2/3})$ can be obtained for non-stationary online linear regression where the total variation of parameter sequence is bounded by $C_n$. Our paper extends the result of online forecasting of one-dimensional time-series as proposed in cite{baby2019online} to general $d$-dimensional non-stationary linear regression. We improve the rate $O(sqrt{n C_n})$ obtained by Zhang et al. 2017 and Besbes et al. 2015. We further extend our analysis to non-stationary online kernel regression. Similar to the non-stationary online regression case, we use the meta-procedure of Zhang et al. 2017 combined with Kernel-AWV (Jezequel et al. 2020) to achieve an expected cumulative controlled by the effective dimension of the RKHS and the total variation of the sequence. To the best of our knowledge, this work is the first extension of non-stationary online regression to non-stationary kernel regression. Lastly, we evaluate our method empirically with several existing benchmarks and also compare it with the theoretical bound obtained in this paper.
Computational efficiency is an important consideration for deploying machine learning models for time series prediction in an online setting. Machine learning algorithms adjust model parameters automatically based on the data, but often require users to set additional parameters, known as hyperparameters. Hyperparameters can significantly impact prediction accuracy. Traffic measurements, typically collected online by sensors, are serially correlated. Moreover, the data distribution may change gradually. A typical adaptation strategy is periodically re-tuning the model hyperparameters, at the cost of computational burden. In this work, we present an efficient and principled online hyperparameter optimization algorithm for Kernel Ridge regression applied to traffic prediction problems. In tests with real traffic measurement data, our approach requires as little as one-seventh of the computation time of other tuning methods, while achieving better or similar prediction accuracy.
277 - Remi Jezequel 2020
We consider the setting of online logistic regression and consider the regret with respect to the 2-ball of radius B. It is known (see [Hazan et al., 2014]) that any proper algorithm which has logarithmic regret in the number of samples (denoted n) n ecessarily suffers an exponential multiplicative constant in B. In this work, we design an efficient improper algorithm that avoids this exponential constant while preserving a logarithmic regret. Indeed, [Foster et al., 2018] showed that the lower bound does not apply to improper algorithms and proposed a strategy based on exponential weights with prohibitive computational complexity. Our new algorithm based on regularized empirical risk minimization with surrogate losses satisfies a regret scaling as O(B log(Bn)) with a per-round time-complexity of order O(d^2).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا