ﻻ يوجد ملخص باللغة العربية
We investigate mesons spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the mesons spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the $rho$-mesons form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.
We calculate spatial correlation functions of in-medium mesons consisting of strange--anti-strange, strange--anti-charm and charm--anti-charm quarks in (2+1)-flavor lattice QCD using the highly improved staggered quark action. A comparative study of
We discuss recent experimental results on the modification of hadron properties in a nuclear medium. Particular emphasis is placed on an $omega$ production experiment performed by the CBELSA/TAPS collaboration at the ELSA accelerator. The data shows
We derive a simple formula relating the cross section for light cluster production (defined via a coalescence factor) to the two-proton correlation function measured in heavy-ion collisions. The formula generalises earlier coalescence-correlation rel
We study the renormalization of the properties of low lying charm and hidden charm scalar mesons in a nuclear medium, concretely of the D_{s0}(2317) and the theoretical hidden charm state X(3700). We find that for the D_{s0}(2317), with negligible wi
The light vector mesons ($rho$, $omega$, and $phi$) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the $rho$ meson at normal nuclear densities and zero temperature.