ترغب بنشر مسار تعليمي؟ اضغط هنا

Light Vector Mesons in the Nuclear Medium

121   0   0.0 ( 0 )
 نشر من قبل Michael H. Wood
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The light vector mesons ($rho$, $omega$, and $phi$) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the $rho$ meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to $e^{+}e^{-}$. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The $rho$ meson mass spectrum was extracted after the $omega$ and $phi$ signals were removed in a nearly model-independent way. Comparisons were made between the $rho$ mass spectra from the heavy targets ($A > 2$) with the mass spectrum extracted from the deuterium target. With respect to the $rho$-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body effects such as collisional broadening and Fermi motion.



قيم البحث

اقرأ أيضاً

46 - Martin Kotulla 2006
We discuss recent experimental results on the modification of hadron properties in a nuclear medium. Particular emphasis is placed on an $omega$ production experiment performed by the CBELSA/TAPS collaboration at the ELSA accelerator. The data shows a smaller $omega$ meson mass together with a significant increase of its width in the nuclear medium.
132 - E. Oset , A. Ramos , E. J. Garzon 2012
In this talk we present a short review of recent developments concerning the interaction of vector mesons with baryons and with nuclei. We begin with the hidden gauge formalism for the interaction of vector mesons, then review results for vector bary on interaction and in particular the resonances which appear as composite states, dynamically generated from the interaction of vector mesons with baryons. New developments concerning the mixing of these states with pseudoscalars and baryons are also reported. We include some discussion on the $5/2^+$ $Delta$ resonances around 2000 MeV, where we suggest that the $Delta(2000)5/2^+$ resonance, which comes in the PDG from averaging a set of resonances appearing around 1700 MeV and another one around 2200 MeV, corresponds indeed to two distinct resonances. We also report on a hidden charm baryon state around 4400 MeV coming from the interaction of vector mesons and baryons with charm, and how this state has some repercussion in the $J/psi$ suppression in nuclei. The interaction of $K^*$ in nuclei is also reported and suggestions are made to measure by means of the transparency ratio the huge width in the medium that the theoretical calculations predict. The formalism is extended to $J/psi$ interaction with nuclei and the transparency ratio for $J/psi$ photoproduction in nuclei is studied and shown to be a good tool to find possible baryon states which couple to $J/psi N$.
The new data on $rho,omega,phi$ radiative decays into $pi^0gamma,etagamma,etagamma$ from SND experiment at VEPP-2M $e^+e^-$ collider are presented.
We present dilepton spectra from p+p and p+Nb collisions at a kinetic beam energy of 3.5 GeV, which were simulated with the GiBUU transport model assuming different in-medium scenarios. We compare these spectra to preliminary HADES data and show that GiBUU can describe the data reasonably well. Our simulations indicate that the intermediate dilepton-mass region is sensitive to the N-Delta electromagnetic transition form factor, which up to now is unmeasured in the time-like region.
367 - R. Molina , D. Gamermann , E. Oset 2009
We study the renormalization of the properties of low lying charm and hidden charm scalar mesons in a nuclear medium, concretely of the D_{s0}(2317) and the theoretical hidden charm state X(3700). We find that for the D_{s0}(2317), with negligible wi dth at zero density, the width becomes about 100 MeV at normal nuclear matter density, while in the case of the X(3700) the width becomes as large as 200 MeV. We discuss the origin of this new width and trace it to reactions occurring in the nucleus, while offering a guideline for future experiments testing these changes. We also show how those medium modifications will bring valuable information on the nature of the scalar resonances and the mechanisms of the interaction of D mesons with nucleons and nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا