ترغب بنشر مسار تعليمي؟ اضغط هنا

A Signaling Game Approach to Databases Querying and Interaction

61   0   0.0 ( 0 )
 نشر من قبل Benjamin McCamish
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As most users do not precisely know the structure and/or the content of databases, their queries do not exactly reflect their information needs. The database management systems (DBMS) may interact with users and use their feedback on the returned results to learn the information needs behind their queries. Current query interfaces assume that users do not learn and modify the way way they express their information needs in form of queries during their interaction with the DBMS. Using a real-world interaction workload, we show that users learn and modify how to express their information needs during their interactions with the DBMS and their learning is accurately modeled by a well-known reinforcement learning mechanism. As current data interaction systems assume that users do not modify their strategies, they cannot discover the information needs behind users queries effectively. We model the interaction between users and DBMS as a game with identical interest between two rational agents whose goal is to establish a common language for representing information needs in form of queries. We propose a reinforcement learning method that learns and answers the information needs behind queries and adapts to the changes in users strategies and prove that it improves the effectiveness of answering queries stochastically speaking. We propose two efficient implementation of this method over large relational databases. Our extensive empirical studies over real-world query workloads indicate that our algorithms are efficient and effective.



قيم البحث

اقرأ أيضاً

Graph query languages feature mainly two kinds of queries when applied to a graph database: those inspired by relational databases which return tables such as SELECT queries and those which return graphs such as CONSTRUCT queries in SPARQL. The latte r are object of study in the present paper. For this purpose, a core graph query language GrAL is defined with focus on CONSTRUCT queries. Queries in GrAL form the final step of a recursive process involving so-called GrAL patterns. By evaluating a query over a graph one gets a graph, while by evaluating a pattern over a graph one gets a set of matches which involves both a graph and a table. CONSTRUCT queries are based on CONSTRUCT patterns, and sub-CONSTRUCT patterns come for free from the recursive definition of patterns. The semantics of GrAL is based on RDF graphs with a slight modification which consists in accepting isolated nodes. Such an extension of RDF graphs eases the definition of the evaluation semantics, which is mainly captured by a unique operation called Merge. Besides, we define aggregations as part of GrAL expressions, which leads to an original local processing of aggregations.
92 - Jan Chomicki 2006
We present here a formal foundation for an iterative and incremental approach to constructing and evaluating preference queries. Our main focus is on query modification: a query transformation approach which works by revising the preference relation in the query. We provide a detailed analysis of the cases where the order-theoretic properties of the preference relation are preserved by the revision. We consider a number of different revision operators: union, prioritized and Pareto composition. We also formulate algebraic laws that enable incremental evaluation of preference queries. Finally, we consider two variations of the basic framework: finite restrictions of preference relations and weak-order extensions of strict partial order preference relations.
In ontology-mediated querying, description logic (DL) ontologies are used to enrich incomplete data with domain knowledge which results in more complete answers to queries. However, the evaluation of ontology-mediated queries (OMQs) over relational d atabases is computationally hard. This raises the question when OMQ evaluation is efficient, in the sense of being tractable in combined complexity or fixed-parameter tractable. We study this question for a range of ontology-mediated query languages based on several important and widely-used DLs, using unions of conjunctive queries as the actual queries. For the DL ELHI extended with the bottom concept, we provide a characterization of the classes of OMQs that are fixed-parameter tractable. For its fragment EL extended with domain and range restrictions and the bottom concept (which restricts the use of inverse roles), we provide a characterization of the classes of OMQs that are tractable in combined complexity. Both results are in terms of equivalence to OMQs of bounded tree width and rest on a reasonable assumption from parameterized complexity theory. They are similar in spirit to Grohes seminal characterization of the tractable classes of conjunctive queries over relational databases. We further study the complexity of the meta problem of deciding whether a given OMQ is equivalent to an OMQ of bounded tree width, providing several completeness results that range from NP to 2ExpTime, depending on the DL used. We also consider the DL-Lite family of DLs, including members that admit functional roles.
Probabilistic databases play a crucial role in the management and understanding of uncertain data. However, incorporating probabilities into the semantics of incomplete databases has posed many challenges, forcing systems to sacrifice modeling power, scalability, or restrict the class of relational algebra formula under which they are closed. We propose an alternative approach where the underlying relational database always represents a single world, and an external factor graph encodes a distribution over possible worlds; Markov chain Monte Carlo (MCMC) inference is then used to recover this uncertainty to a desired level of fidelity. Our approach allows the efficient evaluation of arbitrary queries over probabilistic databases with arbitrary dependencies expressed by graphical models with structure that changes during inference. MCMC sampling provides efficiency by hypothesizing {em modifications} to possible worlds rather than generating entire worlds from scratch. Queries are then run over the portions of the world that change, avoiding the onerous cost of running full queries over each sampled world. A significant innovation of this work is the connection between MCMC sampling and materialized view maintenance techniques: we find empirically that using view maintenance techniques is several orders of magnitude faster than naively querying each sampled world. We also demonstrate our systems ability to answer relational queries with aggregation, and demonstrate additional scalability through the use of parallelization.
Data exchange heavily relies on the notion of incomplete database instances. Several semantics for such instances have been proposed and include open (OWA), closed (CWA), and open-closed (OCWA) world. For all these semantics important questions are: whether one incomplete instance semantically implies another; when two are semantically equivalent; and whether a smaller or smallest semantically equivalent instance exists. For OWA and CWA these questions are fully answered. For several variants of OCWA, however, they remain open. In this work we adress these questions for Closed Powerset semantics and the OCWA semantics of Libkin and Sirangelo, 2011. We define a new OCWA semantics, called OCWA*, in terms of homomorphic covers that subsumes both semantics, and characterize semantic implication and equivalence in terms of such covers. This characterization yields a guess-and-check algorithm to decide equivalence, and shows that the problem is NP-complete. For the minimization problem we show that for several common notions of minimality there is in general no unique minimal equivalent instance for Closed Powerset semantics, and consequently not for the more expressive OCWA* either. However, for Closed Powerset semantics we show that one can find, for any incomplete database, a unique finite set of its subinstances which are subinstances (up to renaming of nulls) of all instances semantically equivalent to the original incomplete one. We study properties of this set, and extend the analysis to OCWA*.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا