ترغب بنشر مسار تعليمي؟ اضغط هنا

Large size and slow rotation of the trans-Neptunian object (225088) 2007 OR10 discovered from Herschel and K2 observations

65   0   0.0 ( 0 )
 نشر من قبل Andras Pal Mr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andras Pal




اسأل ChatGPT حول البحث

We present the first comprehensive thermal and rotational analysis of the second most distant trans-Neptunian object (225088) 2007 OR10. We combined optical light curves provided by the Kepler space telescope -- K2 extended mission and thermal infrared data provided by the Herschel Space Observatory. We found that (225088) 2007 OR10 is likely to be larger and darker than derived by earlier studies: we obtained a diameter of d=1535^{+75}_{-225} km which places (225088) 2007 OR10 in the biggest top three trans-Neptunian objects. The corresponding visual geometric albedo is p_V=0.089^{+0.031}_{-0.009}. The light curve analysis revealed a slow rotation rate of P_rot=44.81+/-0.37 h, superseded by a very few objects only. The most likely light-curve solution is double-peaked with a slight asymmetry, however, we cannot safely rule out the possibility of having a rotation period of P_rot=22.40+/-0.18 h which corresponds to a single-peaked solution. Due to the size and slow rotation, the shape of the object should be a MacLaurin ellipsoid, so the light variation should be caused by surface inhomogeneities. Its newly derived larger diameter also implies larger surface gravity and a more likely retention of volatiles -- CH_4, CO and N_2 -- on the surface.

قيم البحث

اقرأ أيضاً

71 - A. Pal 2015
We present the first photometric observations of trans-Neptunian objects (TNOs) taken with the Kepler space telescope, obtained in the course of the K2 ecliptic survey. Two faint objects have been monitored in specifically designed pixel masks that w ere centered on the stationary points of the objects, when their daily motion was the slowest. In the design of the experiment, only the apparent path of these objects were retrieved from the detectors, i.e. the costs in terms of Kepler pixels were minimized. Because of the faintness of the targets we employ specific reduction techniques and co-added images. We measure rotational periods and amplitudes in the unfiltered Kepler band as follows: for (278361) 2007 JJ43 and 2002 GV31 we get P_rot=12.097 h and P_rot=29.2 h while 0.10 and 0.35 mag for the total amplitudes, respectively. Future space missions, like TESS and PLATO are not well suited to this kind of observations. Therefore, we encourage to include the brightest TNOs around their stationary points in each observing campaign to exploit this unique capability of the K2 Mission -- and therefore to provide unbiased rotational, shape and albedo characteristics of many objects.
149 - M.E. Brown , A.J. Burgasser , 2011
We present photometry and spectra of the large Kuiper belt object 2007 OR10. The data show significant near-infrared absorption features due to water ice. While most objects in the Kuiper belt with water ice absorption this prominent have the optical ly neutral colors of water ice, 2007 OR10 is among the reddest Kuiper belt objects known. One other large Kuiper belt object -- Quaoar -- has similar red coloring and water ice absorption, and it is hypothesized that the red coloration of this object is due to irradiation of the small amounts of methane able to be retained on Quaoar. 2007 OR10, though warmer than Quaoar, is in a similar volatile retention because it is sufficiently larger that its stronger gravity can still retain methane. We propose, therefore, that the red coloration on 2007 OR10 is also caused by the retention of small amounts of methane. Positive detection will require spectra of methane on 2007 OR10 will require spectra with higher signal-to-noise. Models for volatile retention on Kuiper belt objects appear to continue to do an excellent job reproducing all of the available observations.
In this paper we present an analysis of Kepler K2 mission Campaign 3 observations of the irregular Neptune satellite, Nereid. We determined a rotation period of P=11.594(+/-)0.017 h and amplitude of dm=0.0328(+/-)00018, confirming previous short rota tion periods obtained in ground based observations. The similarities of light curve amplitudes between 2001 and 2015 show that Nereid is in a low-amplitude rotation state nowadays and it could have been in a high-amplitude rotation state in the mid 1960s. Another high-amplitude period is expected in about 30 years. Based on the light curve amplitudes observed in the last 15 years we could constrain the shape of Nereid and obtained a maximum a:c axis ratio of 1.3:1. This excludes the previously suggested very elongated shape of a:c=1.9:1 and clearly shows that Nereids spin axis cannot be in forced precession due to tidal forces. Thermal emission data from the Spitzer Space Telescope and the Herschel Space Observatory indicate that Nereids shape is actually close to the a:c axis ratio limit of 1.3:1 we obtained, and it has a very rough, highly cratered surface
On 28th January 2018, the large Trans-Neptunian Object (TNO) 2002TC302 occulted a m$_v= $15.3 star with ID 130957813463146112 in the Gaia DR2 stellar catalog. 12 positive occultation chords were obtained from Italy, France, Slovenia and Switzerland. Also, 4 negative detections were obtained near the north and south limbs. This represents the best observed stellar occultation by a TNO other than Pluto, in terms of the number of chords published thus far. From the 12 chords, an accurate elliptical fit to the instantaneous projection of the body, compatible with the near misses, can be obtained. The resulting ellipse has major and minor axes of 543 $pm$ 18 km and 460 $pm$ 11 km, respectively, with a position angle of 3 $pm$ 1 degrees for the minor axis. This information, combined with rotational light curves obtained with the 1.5m telescope at Sierra Nevada Observatory and the 1.23m telescope at Calar Alto observatory, allows us to derive possible 3D shapes and density estimations for the body, based on hydrostatic equilibrium assumptions. The effective area equivalent diameter is $sim$ 84 km smaller than the radiometrically derived diameter using thermal data from Herschel and Spitzer Space Telescopes. This might indicate the existence of an unresolved satellite of up to $sim$ 300 km in diameter, to account for all the thermal flux, although the occultation and thermal diameters are compatible within their error bars given the considerable uncertainty of the thermal results. The existence of a potential satellite also appears to be consistent with other ground-based data presented here. From the effective occultation diameter combined with H$_V$ measurements we derive a geometric albedo of 0.147 $pm$ 0.005, which would be somewhat smaller if 2002TC302 has a satellite. The best occultation light curves do not show any signs of ring features or any signatures of a global atmosphere.
115 - S. I. Ipatov 2018
The dependences of inclinations of orbits of secondaries in the discovered trans-Neptunian binaries on the distance between the primary and the secondary, on the eccentricity of orbits of the secondary around the primary, on the ratio of diameters of the secondary and the primary, and on the elements of heliocentric orbits of these binaries are studied. These dependences are interpreted using the model of formation of a satellite system in a collision of two rarefied condensations composed of dust and/or objects less than 1 m in diameter. It is assumed in this model that a satellite system forms in the process of compression of a condensation produced in such a collision. The model of formation of a satellite system in a collision of two condensations agrees with the results of observations: according to observational data, approximately 40% of trans-Neptunian binaries have a negative angular momentum relative to their centers of mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا