ترغب بنشر مسار تعليمي؟ اضغط هنا

The large Trans-Neptunian Object 2002 TC$_{302}$ from combined stellar occultation, photometry and astrometry data

65   0   0.0 ( 0 )
 نشر من قبل Pablo Santos-Sanz
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On 28th January 2018, the large Trans-Neptunian Object (TNO) 2002TC302 occulted a m$_v= $15.3 star with ID 130957813463146112 in the Gaia DR2 stellar catalog. 12 positive occultation chords were obtained from Italy, France, Slovenia and Switzerland. Also, 4 negative detections were obtained near the north and south limbs. This represents the best observed stellar occultation by a TNO other than Pluto, in terms of the number of chords published thus far. From the 12 chords, an accurate elliptical fit to the instantaneous projection of the body, compatible with the near misses, can be obtained. The resulting ellipse has major and minor axes of 543 $pm$ 18 km and 460 $pm$ 11 km, respectively, with a position angle of 3 $pm$ 1 degrees for the minor axis. This information, combined with rotational light curves obtained with the 1.5m telescope at Sierra Nevada Observatory and the 1.23m telescope at Calar Alto observatory, allows us to derive possible 3D shapes and density estimations for the body, based on hydrostatic equilibrium assumptions. The effective area equivalent diameter is $sim$ 84 km smaller than the radiometrically derived diameter using thermal data from Herschel and Spitzer Space Telescopes. This might indicate the existence of an unresolved satellite of up to $sim$ 300 km in diameter, to account for all the thermal flux, although the occultation and thermal diameters are compatible within their error bars given the considerable uncertainty of the thermal results. The existence of a potential satellite also appears to be consistent with other ground-based data presented here. From the effective occultation diameter combined with H$_V$ measurements we derive a geometric albedo of 0.147 $pm$ 0.005, which would be somewhat smaller if 2002TC302 has a satellite. The best occultation light curves do not show any signs of ring features or any signatures of a global atmosphere.



قيم البحث

اقرأ أيضاً

We present results from the first recorded stellar occultation by the large trans-Neptunian object (174567) Varda that was observed on September 10$^{rm th}$, 2018. Varda belongs to the high-inclination dynamically excited population, and has a satel lite, Ilmare, which is half the size of Varda. We determine the size and albedo of Varda and constrain its 3D shape and density. Thirteen different sites in the USA monitored the event, five of which detected an occultation by the main body. A best-fitting ellipse to the occultation chords provides the instantaneous limb of the body, from which the geometric albedo is computed. The size and shape of Varda are evaluated, and its bulk density is constrained, using Vardas mass known from previous works. The best-fitting elliptical limb has semi-major (equatorial) axis of $(383 pm 3)$km and an apparent oblateness $0.066pm0.047$ corresponding to an apparent area-equivalent radius $R_{rm equiv}= (370pm7)$km and geometric albedo $p_v=0.099pm 0.002 $ assuming a visual absolute magnitude $H_V=3.81pm0.01$. Using three possible rotational periods for the body (4.76h, 5.91h, and 7.87h), we derive corresponding MacLaurin solutions. Furthermore, given the low-amplitude ($0.06pm0.01$) mag of the single-peaked rotational light-curve for the aforementioned periods, we consider the double periods. For the 5.91h period (the most probable) and its double (11.82h), we find bulk densities and true oblateness of $rho=(1.78pm0.06)$ g cm$^{-3}$, $epsilon=0.235pm0.050$ and $rho=(1.23pm0.04)$ g cm$^{-3}$, $epsilon=0.080pm0.049$. However, it must be noted that the other solutions cannot be excluded just yet.
Transneptunian objects (TNOs) are a source of invaluable information to access the history and evolution of the outer solar system. However, observing these faint objects is a difficult task. As a consequence, important properties such as size and al bedo are known for only a small fraction of them. Now, with the results from deep sky surveys and the Gaia space mission, a new exciting era is within reach as accurate predictions of stellar occultations by numerous distant small solar system bodies become available. From them, diameters with kilometer accuracies can be determined. Albedos, in turn, can be obtained from diameters and absolute magnitudes. We use observations from the Dark Energy Survey (DES) from November 2012 until February 2016, amounting to 4292847 CCD frames. We searched them for all known small solar system bodies and recovered a total of 202 TNOs and Centaurs, 63 of which have been discovered by the DES collaboration until the date of this writing. Their positions were determined using the Gaia Data Release 2 as reference and their orbits were refined. Stellar occultations were then predicted using these refined orbits plus stellar positions from Gaia. These predictions are maintained, and updated, in a dedicated web service. The techniques developed here are also part of an ambitious preparation to use the data from the Large Synoptic Survey Telescope (LSST), that expects to obtain accurate positions and multifilter photometry for tens of thousands of TNOs.
274 - F. L. Rommel 2020
Trans-Neptunian objects (TNOs) and Centaurs are remnants of our planetary system formation, and their physical properties have invaluable information for evolutionary theories. Stellar occultation is a ground-based method for studying these small bod ies and has presented exciting results. These observations can provide precise profiles of the involved body, allowing an accurate determination of its size and shape. The goal is to show that even single-chord detections of TNOs allow us to measure their milliarcsecond astrometric positions in the reference frame of the Gaia second data release (DR2). Accurated ephemerides can then be generated, allowing predictions of stellar occultations with much higher reliability. We analyzed data from stellar occultations to obtain astrometric positions of the involved bodies. The events published before the Gaia era were updated so that the Gaia DR2 catalog is the reference. Previously determined sizes were used to calculate the position of the object center and its corresponding error with respect to the detected chord and the International Celestial Reference System (ICRS) propagated Gaia DR2 star position. We derive 37 precise astrometric positions for 19 TNOs and 4 Centaurs. Twenty-one of these events are presented here for the first time. Although about 68% of our results are based on single-chord detection, most have intrinsic precision at the submilliarcsecond level. Lower limits on the diameter and shape constraints for a few bodies are also presented as valuable byproducts. Using the Gaia DR2 catalog, we show that even a single detection of a stellar occultation allows improving the object ephemeris significantly, which in turn enables predicting a future stellar occultation with high accuracy. Observational campaigns can be efficiently organized with this help, and may provide a full physical characterization of the involved object.
A stellar occultation by the extreme large-perihelion trans-Neptunian object (541132) Lele={a}k={u}honua (also known by the provisional designation of 2015 TG387) was predicted by the Lucky Star project and observed with the Research and Education Co llaborative Occultation Network on 2018 October 20 UT. A single detection and a nearby nondetection provide constraints for the size and albedo. When a circular profile is assumed, the radius is $r={110}_{-10}^{+14}$ km, corresponding to a geometric albedo ${p}_{V}={0.21}_{-0.05}^{+0.03}$, for an adopted absolute magnitude of H V = 5.6, typical of other objects in dynamically similar orbits. The occultation also provides a high-precision astrometric constraint.
We present results from three world-wide campaigns that resulted in the detections of two single-chord and one multi-chord stellar occultations by the Plutino object (84922) 2003~VS$_2$. From the single-chord occultations in 2013 and 2014 we obtained accurate astrometric positions for the object, while from the multi-chord occultation on November 7th, 2014, we obtained the parameters of the best-fitting ellipse to the limb of the body at the time of occultation. We also obtained short-term photometry data for the body in order to derive its rotational phase during the occultation. The rotational light curve present a peak-to-peak amplitude of 0.141 $pm$ 0.009 mag. This allows us to reconstruct the three-dimensional shape of the body, with principal semi-axes $a = 313.8 pm 7.1$ km, $b = 265.5^{+8.8}_{-9.8}$ km, and $c = 247.3^{+26.6}_{-43.6}$ km, which is not consistent with a Jacobi triaxial equilibrium figure. The derived spherical volume equivalent diameter of $548.3 ^{+29.5}_{-44.6}$ km is about 5% larger than the radiometric diameter of 2003~VS$_2$ derived from Herschel data of $523 pm 35$ km, but still compatible with it within error bars. From those results we can also derive the geometric albedo ($0.123 ^{+0.015}_{-0.014}$) and, under the assumption that the object is a Maclaurin spheroid, the density $rho = 1400^{+1000}_{-300}$ for the plutino. The disappearances and reappearances of the star during the occultations do not show any compelling evidence for a global atmosphere considering a pressure upper limit of about 1 microbar for a pure nitrogen atmosphere, nor secondary features (e.g. rings or satellite) around the main body.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا