ﻻ يوجد ملخص باللغة العربية
In many applications, and in systems/synthetic biology, in particular, it is desirable to compute control policies that force the trajectory of a bistable system from one equilibrium (the initial point) to another equilibrium (the target point), or in other words to solve the switching problem. It was recently shown that, for monotone bistable systems, this problem admits easy-to-implement open-loop solutions in terms of temporal pulses (i.e., step functions of fixed length and fixed magnitude). In this paper, we develop this idea further and formulate a problem of convergence to an equilibrium from an arbitrary initial point. We show that this problem can be solved using a static optimization problem in the case of monotone systems. Changing the initial point to an arbitrary state allows to build closed-loop, event-based or open-loop policies for the switching/convergence problems. In our derivations we exploit the Koopman operator, which offers a linear infinite-dimensional representation of an autonomous nonlinear system. One of the main advantages of using the Koopman operator is the powerful computational tools developed for this framework. Besides the presence of numerical solutions, the switching/convergence problem can also serve as a building block for solving more complicated control problems and can potentially be applied to non-monotone systems. We illustrate this argument on the problem of synchronizing cardiac cells by defibrillation. Potentially, our approach can be extended to problems with different parametrizations of control signals since the only fundamental limitation is the finite time application of the control signal.
This paper introduces a framework for solving time-autonomous nonlinear infinite horizon optimal control problems, under the assumption that all minimizers satisfy Pontryagins necessary optimality conditions. In detail, we use methods from the field
In the development of model predictive controllers for PDE-constrained problems, the use of reduced order models is essential to enable real-time applicability. Besides local linearization approaches, Proper Orthogonal Decomposition (POD) has been mo
The Koopman operator allows for handling nonlinear systems through a (globally) linear representation. In general, the operator is infinite-dimensional - necessitating finite approximations - for which there is no overarching framework. Although ther
In this effort, a novel operator theoretic framework is developed for data-driven solution of optimal control problems. The developed methods focus on the use of trajectories (i.e., time-series) as the fundamental unit of data for the resolution of o
Methods for constructing causal linear models from nonlinear dynamical systems through lifting linearization underpinned by Koopman operator and physical system modeling theory are presented. Outputs of a nonlinear control system, called observables,