ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase nucleation in curved space

54   0   0.0 ( 0 )
 نشر من قبل Leopoldo Gomez R.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nucleation and growth is the dominant relaxation mechanism driving first order phase transitions. In two-dimensional at systems nucleation has been applied to a wide range of problems in physics, chemistry and biology. Here we study nucleation and growth of two-dimensional phases lying on curved surfaces and show that curvature modify both, critical sizes of nuclei and paths towards the equilibrium phase. In curved space nucleation and growth becomes inherently inhomogeneous and critical nuclei form faster on regions of positive Gaussian curvature. Substrates of varying shape display complex energy landscapes with several geometry-induced local minima, where initially propagating nuclei become stabilized and trapped by the underlying curvature.

قيم البحث

اقرأ أيضاً

We investigate the energetics of droplets sourced by the thermal fluctuations in a system undergoing a first-order transition. In particular, we confine our studies to two dimensions with explicit calulations in the plane and on the sphere. Using an isoperimetric inequality from the differential geometry literature and a theorem on the inequalitys saturation, we show how geometry informs the critical droplet size and shape. This inequality establishes a mean field result for nucleated droplets. We then study the effects of fluctuations on the interfaces of droplets in two dimensions, treating the droplet interface as a fluctuating line. We emphasize that care is needed in deriving the line curvature energy from the Landau-Ginzburg energy functional and in interpreting the scalings of the nucleation rate with the size of the droplet. We end with a comparison of nucleation in the plane and on a sphere.
An approach that has been given promising results concerning investigations on the physics of graphene is the so-called reduced quantum electrodynamics. In this work we consider the natural generalization of this formalism to curved spaces. We employ the local momentum space representation. We discuss the validity of the Ward identity and study one-loop diagrams in detail. We show that the one-loop beta function is zero. As an application, we calculate the one-loop optical conductivity of graphene by taking into account curvature effects which can be incorporated locally. In addition, we demonstrate how such effects may contribute to the conductivity. Furthermore, and quite unexpectedly, our calculations unveil the emergence of a curvature-induced effective chemical potential contribution in the optical conductivity.
In this work we have shown precisely that the curvature of a 2-sphere introduces quantum features in the system through the introduction of the noncommutative (NC) parameter that appeared naturally via equations of motion. To obtain this result we us ed the fact that quantum mechanics can be understood as a NC symplectic geometry, which generalized the standard description of classical mechanics as a symplectic geometry. In this work, we have also analyzed the dynamics of the model of a free particle over a 2-sphere in a NC phase-space. Besides, we have shown the solution of the equations of motion allows one to show the equivalence between the movement of the particle physical degrees of freedom upon a 2-sphere and the one described by a central field. We have considered the effective force felt by the particle as being caused by the curvature of the space. We have analyzed the NC Poisson algebra of classical observables in order to obtain the NC corrections to Newtons second law. We have demonstrated precisely that the curvature of the space acted as an effective potential for a free particle in a flat phase-space. Besides, through NC coherent states quantization we have obtained the Green function of the theory. The result have confirmed that we have an UV cutoff for large momenta in the NC kernel. We have also discussed the relation between affine connection and Dirac brackets, as they describe the proper evolution of the model over the surface of constraints in the Lagrangian and Hamiltonian formalisms, respectively. As an application, we have treated the so-called textit{Zitterbewegung} of the Dirac electron. Since it is assumed to be an observable effect, then we have traced its physical origin by assuming that the electron has an internal structure.
375 - J. Kowalski-Glikman 2013
In this paper we review some aspects of relativistic particles mechanics in the case of a non-trivial geometry of momentum space. We start with showing how the curved momentum space arises in the theory of gravity in 2+1 dimensions coupled to particl es, when (topological) degrees of freedom of gravity are solved for. We argue that there might exist a similar topological phase of quantum gravity in 3+1 dimensions. Then we characterize the main properties of the theory of interacting particles with curved momentum space and the symmetries of the action. We discuss the spacetime picture and the emergence of the principle of relative locality, according to which locality of events is not absolute but becomes observer dependent, in the controllable, relativistic way. We conclude with the detailed review of the most studied kappa-Poincare framework, which corresponds to the de Sitter momentum space.
The Snyder-de Sitter (SdS) model which is invariant under the action of the de Sitter group, is an example of a noncommutative spacetime with three fundamental scales. In this paper, we considered the massless Dirac fermions in graphene layer in a cu rved Snyder spacetime which are subjected to an external magnetic field. We employed representation in the momentum space to derive the energy eigenvalues and the eigenfunctions of the system. Then, we used the deduced energy function obtaining the internal energy, heat capacity, and entropy functions. We investigated the role of the fundamental scales on these thermal quantities of the graphene layer. We found that the effect of the SdS model on the thermodynamic properties is significant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا