ﻻ يوجد ملخص باللغة العربية
The Snyder-de Sitter (SdS) model which is invariant under the action of the de Sitter group, is an example of a noncommutative spacetime with three fundamental scales. In this paper, we considered the massless Dirac fermions in graphene layer in a curved Snyder spacetime which are subjected to an external magnetic field. We employed representation in the momentum space to derive the energy eigenvalues and the eigenfunctions of the system. Then, we used the deduced energy function obtaining the internal energy, heat capacity, and entropy functions. We investigated the role of the fundamental scales on these thermal quantities of the graphene layer. We found that the effect of the SdS model on the thermodynamic properties is significant.
The Snyder-de Sitter model is an extension of the Snyder model to a de Sitter background. It is called triply special relativity (TSR) because it is based on three fundamental parameters: speed of light, Planck mass, and the cosmological constant. In
In this paper we review some aspects of relativistic particles mechanics in the case of a non-trivial geometry of momentum space. We start with showing how the curved momentum space arises in the theory of gravity in 2+1 dimensions coupled to particl
We study bubble universe collisions in the ultrarelativistic limit with the new feature of allowing for nontrivial curvature in field space. We establish a simple geometrical interpretation of such collisions in terms of a double family of field prof
The generalization of Cohen and Glashows Very Special Relativity to curved space-times is considered. Gauging the SIM(2) symmetry does not, in general, provide the coupling to the gravitational background. However, locally SIM(2) invariant Lagrangian
I briefly discuss the construction of a theory of particles with curved momentum space and its consequence, the principle of relative locality.